import clip import gc import numpy as np import os import pandas as pd import requests import torch import torchvision.transforms as T import torchvision.transforms.functional as TF #from IPython.display import display from PIL import Image from torch import nn from torch.nn import functional as F from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from BLIP.models.blip import blip_decoder import gradio as gr device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') blip_image_eval_size = 384 blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth' blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base') blip_model.eval() blip_model = blip_model.to(device) def generate_caption(pil_image): gpu_image = transforms.Compose([ transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ])(pil_image).unsqueeze(0).to(device) with torch.no_grad(): caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5) return caption[0] def load_list(filename): with open(filename, 'r', encoding='utf-8', errors='replace') as f: items = [line.strip() for line in f.readlines()] return items def rank(model, image_features, text_array, top_count=1): top_count = min(top_count, len(text_array)) text_tokens = clip.tokenize([text for text in text_array])#.cuda() with torch.no_grad(): text_features = model.encode_text(text_tokens).float() text_features /= text_features.norm(dim=-1, keepdim=True) similarity = torch.zeros((1, len(text_array))).to(device) for i in range(image_features.shape[0]): similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) similarity /= image_features.shape[0] top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] def interrogate(cover): image = Image.fromarray(cover) #image = cover models = models1 #caption = generate_caption(Image.fromarray(cover)) caption = generate_caption(image) if len(models) == 0: #print(f"\n\n{caption}") return table = [] bests = [[('',0)]]*5 for model_name in models: #print(f"Interrogating with {model_name}...") model, preprocess = clip.load(model_name) #model.cuda().eval() images = preprocess(image).unsqueeze(0)#.cuda() with torch.no_grad(): image_features = model.encode_image(images).float() image_features /= image_features.norm(dim=-1, keepdim=True) ranks = [ rank(model, image_features, mediums), rank(model, image_features, ["by "+artist for artist in artists]), rank(model, image_features, trending_list), rank(model, image_features, movements), rank(model, image_features, flavors, top_count=3) ] for i in range(len(ranks)): confidence_sum = 0 for ci in range(len(ranks[i])): confidence_sum += ranks[i][ci][1] if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))): bests[i] = ranks[i] row = [model_name] for r in ranks: row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r])) table.append(row) del model gc.collect() #display(pd.DataFrame(table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"])) flaves = ', '.join([f"{x[0]}" for x in bests[4]]) medium = bests[0][0][0] if caption.startswith(medium): return(f"{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}") #print(f"{caption} {bests[3][0][0]}, {flaves}") else: return(f"{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}") #print(f"{caption} {bests[3][0][0]}, {flaves}") data_path = "./clip-interrogator/data/" artists = load_list(os.path.join(data_path, 'artists.txt')) flavors = load_list(os.path.join(data_path, 'flavors.txt')) mediums = load_list(os.path.join(data_path, 'mediums.txt')) movements = load_list(os.path.join(data_path, 'movements.txt')) sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central'] trending_list = [site for site in sites] trending_list.extend(["trending on "+site for site in sites]) trending_list.extend(["featured on "+site for site in sites]) trending_list.extend([site+" contest winner" for site in sites]) models1 = ['ViT-B/32'] width = 130 height = 180 cover = gr.inputs.Image(shape=(width, height), label='Upload cover image to classify') label = gr.outputs.Label(label='Model prediction') examples=["00064.jpg","00068.jpg", "00069.jpg"] title="Image2Text-CLIP Application" description=''' 此文本是使用 OpenAI CLIP 模型針對各種藝術家、媒介和風格測試給定圖像,轉化出AI對於圖像的理解.