import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import random import torch import torch.nn as nn import torch.nn.functional as F import os from collections import abc # from pointnet2_ops import pointnet2_utils # def fps(data, number): # ''' # data B N 3 # number int # ''' # fps_idx = pointnet2_utils.furthest_point_sample(data, number) # fps_data = pointnet2_utils.gather_operation(data.transpose(1, 2).contiguous(), fps_idx).transpose(1,2).contiguous() # return fps_data def index_points(points, idx): """ Input: points: input points data, [B, N, C] idx: sample index data, [B, S] Return: new_points:, indexed points data, [B, S, C] """ device = points.device B = points.shape[0] view_shape = list(idx.shape) view_shape[1:] = [1] * (len(view_shape) - 1) repeat_shape = list(idx.shape) repeat_shape[0] = 1 batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) new_points = points[batch_indices, idx, :] return new_points def fps(xyz, npoint): """ Input: xyz: pointcloud data, [B, N, 3] npoint: number of samples Return: centroids: sampled pointcloud index, [B, npoint] """ device = xyz.device B, N, C = xyz.shape centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) distance = torch.ones(B, N).to(device) * 1e10 farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) batch_indices = torch.arange(B, dtype=torch.long).to(device) for i in range(npoint): centroids[:, i] = farthest centroid = xyz[batch_indices, farthest, :].view(B, 1, 3) dist = torch.sum((xyz - centroid) ** 2, -1) distance = torch.min(distance, dist) farthest = torch.max(distance, -1)[1] return index_points(xyz, centroids) def worker_init_fn(worker_id): np.random.seed(np.random.get_state()[1][0] + worker_id) def build_lambda_sche(opti, config): if config.get('decay_step') is not None: lr_lbmd = lambda e: max(config.lr_decay ** (e / config.decay_step), config.lowest_decay) scheduler = torch.optim.lr_scheduler.LambdaLR(opti, lr_lbmd) else: raise NotImplementedError() return scheduler def build_lambda_bnsche(model, config): if config.get('decay_step') is not None: bnm_lmbd = lambda e: max(config.bn_momentum * config.bn_decay ** (e / config.decay_step), config.lowest_decay) bnm_scheduler = BNMomentumScheduler(model, bnm_lmbd) else: raise NotImplementedError() return bnm_scheduler def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html if cuda_deterministic: # slower, more reproducible cudnn.deterministic = True cudnn.benchmark = False else: # faster, less reproducible cudnn.deterministic = False cudnn.benchmark = True """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def is_seq_of(seq, expected_type, seq_type=None): """Check whether it is a sequence of some type. Args: seq (Sequence): The sequence to be checked. expected_type (type): Expected type of sequence items. seq_type (type, optional): Expected sequence type. Returns: bool: Whether the sequence is valid. """ if seq_type is None: exp_seq_type = abc.Sequence else: assert isinstance(seq_type, type) exp_seq_type = seq_type if not isinstance(seq, exp_seq_type): return False for item in seq: if not isinstance(item, expected_type): return False return True def set_bn_momentum_default(bn_momentum): def fn(m): if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)): m.momentum = bn_momentum return fn class BNMomentumScheduler(object): def __init__( self, model, bn_lambda, last_epoch=-1, setter=set_bn_momentum_default ): if not isinstance(model, nn.Module): raise RuntimeError( "Class '{}' is not a PyTorch nn Module".format( type(model).__name__ ) ) self.model = model self.setter = setter self.lmbd = bn_lambda self.step(last_epoch + 1) self.last_epoch = last_epoch def step(self, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch self.model.apply(self.setter(self.lmbd(epoch))) def get_momentum(self, epoch=None): if epoch is None: epoch = self.last_epoch + 1 return self.lmbd(epoch) def seprate_point_cloud(xyz, num_points, crop, fixed_points = None, padding_zeros = False): ''' seprate point cloud: usage : using to generate the incomplete point cloud with a setted number. ''' _,n,c = xyz.shape assert n == num_points assert c == 3 if crop == num_points: return xyz, None INPUT = [] CROP = [] for points in xyz: if isinstance(crop,list): num_crop = random.randint(crop[0],crop[1]) else: num_crop = crop points = points.unsqueeze(0) if fixed_points is None: center = F.normalize(torch.randn(1,1,3),p=2,dim=-1).cuda() else: if isinstance(fixed_points,list): fixed_point = random.sample(fixed_points,1)[0] else: fixed_point = fixed_points center = fixed_point.reshape(1,1,3).cuda() distance_matrix = torch.norm(center.unsqueeze(2) - points.unsqueeze(1), p =2 ,dim = -1) # 1 1 2048 idx = torch.argsort(distance_matrix,dim=-1, descending=False)[0,0] # 2048 if padding_zeros: input_data = points.clone() input_data[0, idx[:num_crop]] = input_data[0,idx[:num_crop]] * 0 else: input_data = points.clone()[0, idx[num_crop:]].unsqueeze(0) # 1 N 3 crop_data = points.clone()[0, idx[:num_crop]].unsqueeze(0) if isinstance(crop,list): INPUT.append(fps(input_data,2048)) CROP.append(fps(crop_data,2048)) else: INPUT.append(input_data) CROP.append(crop_data) input_data = torch.cat(INPUT,dim=0)# B N 3 crop_data = torch.cat(CROP,dim=0)# B M 3 return input_data.contiguous(), crop_data.contiguous() def get_ptcloud_img(ptcloud): fig = plt.figure(figsize=(8, 8)) x, z, y = ptcloud.transpose(1, 0) ax = fig.gca(projection=Axes3D.name, adjustable='box') ax.axis('off') # ax.axis('scaled') ax.view_init(30, 45) max, min = np.max(ptcloud), np.min(ptcloud) ax.set_xbound(min, max) ax.set_ybound(min, max) ax.set_zbound(min, max) ax.scatter(x, y, z, zdir='z', c=x, cmap='jet') fig.canvas.draw() img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') img = img.reshape(fig.canvas.get_width_height()[::-1] + (3, )) return img def visualize_KITTI(path, data_list, titles = ['input','pred'], cmap=['bwr','autumn'], zdir='y', xlim=(-1, 1), ylim=(-1, 1), zlim=(-1, 1) ): fig = plt.figure(figsize=(6*len(data_list),6)) cmax = data_list[-1][:,0].max() for i in range(len(data_list)): data = data_list[i][:-2048] if i == 1 else data_list[i] color = data[:,0] /cmax ax = fig.add_subplot(1, len(data_list) , i + 1, projection='3d') ax.view_init(30, -120) b = ax.scatter(data[:, 0], data[:, 1], data[:, 2], zdir=zdir, c=color,vmin=-1,vmax=1 ,cmap = cmap[0],s=4,linewidth=0.05, edgecolors = 'black') ax.set_title(titles[i]) ax.set_axis_off() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_zlim(zlim) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0.2, hspace=0) if not os.path.exists(path): os.makedirs(path) pic_path = path + '.png' fig.savefig(pic_path) np.save(os.path.join(path, 'input.npy'), data_list[0].numpy()) np.save(os.path.join(path, 'pred.npy'), data_list[1].numpy()) plt.close(fig) def random_dropping(pc, e): up_num = max(64, 768 // (e//50 + 1)) pc = pc random_num = torch.randint(1, up_num, (1,1))[0,0] pc = fps(pc, random_num) padding = torch.zeros(pc.size(0), 2048 - pc.size(1), 3).to(pc.device) pc = torch.cat([pc, padding], dim = 1) return pc def random_scale(partial, scale_range=[0.8, 1.2]): scale = torch.rand(1).cuda() * (scale_range[1] - scale_range[0]) + scale_range[0] return partial * scale