Spaces:
Sleeping
Sleeping
File size: 9,644 Bytes
02ba63a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import spaces
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from model_module import AutoencoderModule
from dataset import MyDataset, load_filenames
from utils import DistanceMapLogger
import numpy as np
from PIL import Image
import base64
from io import BytesIO
# モデルとデータの読み込み
def load_model():
model_path = "checkpoints/ae_model_tf_2024-03-05_00-35-21.pth"
feature_dim = 32
model = AutoencoderModule(feature_dim=feature_dim)
state_dict = torch.load(model_path)
# state_dict のキーを修正
new_state_dict = {}
for key in state_dict:
new_key = "model." + key
new_state_dict[new_key] = state_dict[key]
model.load_state_dict(new_state_dict)
model.eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print("Model loaded successfully.")
return model, device
def load_data(device, img_dir="resources/trainB/", image_size=112, batch_size=32):
filenames = load_filenames(img_dir)
train_X = filenames[:1000]
train_ds = MyDataset(train_X, img_dir=img_dir, img_size=image_size)
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
shuffle=True,
num_workers=0,
)
iterator = iter(train_loader)
x, _, _ = next(iterator)
x = x.to(device)
x = x[:,0].to(device)
print("Data loaded successfully.")
return x
model, device = load_model()
image_size = 112
batch_size = 32
x = load_data(device)
# アップロード画像の前処理
def preprocess_uploaded_image(uploaded_image, image_size):
uploaded_image = Image.fromarray(uploaded_image)
uploaded_image = uploaded_image.convert("RGB")
uploaded_image = uploaded_image.resize((image_size, image_size))
uploaded_image = np.array(uploaded_image).transpose(2, 0, 1) / 255.0
uploaded_image = torch.tensor(uploaded_image, dtype=torch.float32).unsqueeze(0).to(device)
return uploaded_image
# ヒートマップの生成関数
@spaces.GPU
def get_heatmaps(source_num, x_coords, y_coords, uploaded_image):
with torch.no_grad():
dec5, _ = model(x)
img = x
feature_map = dec5
batch_size = feature_map.size(0)
feature_dim = feature_map.size(1)
# アップロード画像の前処理
if uploaded_image is not None:
uploaded_image = preprocess_uploaded_image(uploaded_image, image_size)
target_feature_map, _ = model(uploaded_image)
img = torch.cat((img, uploaded_image))
feature_map = torch.cat((feature_map, target_feature_map))
batch_size += 1
else:
uploaded_image = torch.zeros(1, 3, image_size, image_size, device=device)
target_num = batch_size - 1
x_coords = [x_coords] * batch_size
y_coords = [y_coords] * batch_size
vectors = feature_map[torch.arange(feature_map.size(0)), :, y_coords, x_coords]
vector = vectors[source_num]
reshaped_feature_map = feature_map.permute(0, 2, 3, 1).view(feature_map.size(0), -1, feature_dim)
batch_distance_map = F.pairwise_distance(reshaped_feature_map, vector).view(feature_map.size(0), image_size, image_size)
norm_batch_distance_map = 1 / torch.cosh(20 * (batch_distance_map - batch_distance_map.min()) / (batch_distance_map.max() - batch_distance_map.min())) ** 2
source_map = norm_batch_distance_map[source_num]
target_map = norm_batch_distance_map[target_num]
alpha = 0.8
blended_source = (1 - alpha) * img[source_num] + alpha * torch.cat(((norm_batch_distance_map[source_num] / norm_batch_distance_map[source_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
blended_target = (1 - alpha) * img[target_num] + alpha * torch.cat(((norm_batch_distance_map[target_num] / norm_batch_distance_map[target_num].max()).unsqueeze(0), torch.zeros(2, image_size, image_size, device=device)))
# Matplotlibでプロットして画像として保存
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
axs[0, 0].imshow(source_map.cpu(), cmap='hot')
axs[0, 0].set_title("Source Map")
axs[0, 1].imshow(target_map.cpu(), cmap='hot')
axs[0, 1].set_title("Target Map")
axs[1, 0].imshow(blended_source.permute(1, 2, 0).cpu())
axs[1, 0].set_title("Blended Source")
axs[1, 1].imshow(blended_target.permute(1, 2, 0).cpu())
axs[1, 1].set_title("Blended Target")
for ax in axs.flat:
ax.axis('off')
plt.tight_layout()
plt.close(fig)
return fig
def process_image(cropped_image_data):
# Base64からPILイメージに変換
header, base64_data = cropped_image_data.split(',', 1)
image_data = base64.b64decode(base64_data)
image = Image.open(BytesIO(image_data))
return image
# JavaScriptコード
scripts = """
async () => {
const script = document.createElement("script");
script.src = "https://cdnjs.cloudflare.com/ajax/libs/cropperjs/1.5.13/cropper.min.js";
document.head.appendChild(script);
const style = document.createElement("link");
style.rel = "stylesheet";
style.href = "https://cdnjs.cloudflare.com/ajax/libs/cropperjs/1.5.13/cropper.min.css";
document.head.appendChild(style);
script.onload = () => {
let cropper;
document.getElementById("input_file_button").onclick = function() {
document.querySelector("#input_file").click();
};
// GradioのFileコンポーネントから画像を読み込む
document.querySelector("#input_file").addEventListener("change", function(e) {
const files = e.target.files;
console.log(files);
if (files && files.length > 0) {
console.log("File selected");
document.querySelector("#crop_view").style.display = "block";
document.querySelector("#crop_button").style.display = "block";
const url = URL.createObjectURL(files[0]);
const crop_view = document.getElementById("crop_view");
crop_view.src = url;
if (cropper) {
cropper.destroy();
}
cropper = new Cropper(crop_view, {
aspectRatio: 1,
viewMode: 1,
});
}
});
// GradioボタンにJavaScriptの機能を追加
document.getElementById("crop_button").onclick = function() {
if (cropper) {
const canvas = cropper.getCroppedCanvas();
const croppedImageData = canvas.toDataURL();
// Gradioにクロップ画像を送信
const textbox = document.querySelector("#cropped_image_data textarea");
textbox.value = croppedImageData;
textbox.dispatchEvent(new Event("input", { bubbles: true }));
document.getElementById("crop_view").style.display = "none";
document.getElementById("crop_button").style.display = "none";
cropper.destroy();
}
};
document.getElementById("crop_view").style.display = "none";
document.getElementById("crop_button").style.display = "none";
};
}
"""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
source_num = gr.Slider(0, batch_size - 1, step=1, label="Source Image Index")
x_coords = gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="X Coordinate")
y_coords = gr.Slider(0, image_size - 1, step=1, value=image_size // 2, label="Y Coordinate")
# GradioのFileコンポーネントでファイル選択ボタンを追加
gr.HTML('<input type="file" id="input_file" style="display:none;">')
input_file_button = gr.Button("画像を選択", elem_id="input_file_button")
# 画像を表示するためのHTML画像タグをGradioで表示
gr.HTML('<img id="crop_view" style="max-width:100%;">')
# Gradioのボタンコンポーネントを追加し、IDを付与
crop_button = gr.Button("クロップ", elem_id="crop_button", variant="primary")
# クロップされた画像データのテキストボックス(Base64データ)
cropped_image_data = gr.Textbox(visible=False, elem_id="cropped_image_data")
input_image = gr.Image(label="Cropped Image", interactive=False)
# cropped_image_dataが更新されたらprocess_imageを呼び出す
cropped_image_data.change(process_image, inputs=cropped_image_data, outputs=input_image)
with gr.Column():
output_plot = gr.Plot()
# Gradioインターフェースの代わり
source_num.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
x_coords.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
y_coords.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
input_image.change(get_heatmaps, inputs=[source_num, x_coords, y_coords, input_image], outputs=output_plot)
# JavaScriptコードをロード
demo.load(None, None, None, js=scripts)
demo.launch()
|