import torch import torch.nn as nn import torch.nn.functional as F import functools from scripts.hf_utils import download_file class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class Smooth(nn.Module): def __init__(self): super().__init__() kernel = [ [1, 2, 1], [2, 4, 2], [1, 2, 1] ] kernel = torch.tensor([[kernel]], dtype=torch.float) kernel /= kernel.sum() self.register_buffer('kernel', kernel) self.pad = nn.ReplicationPad2d(1) def forward(self, x): b, c, h, w = x.shape x = x.view(-1, 1, h, w) x = self.pad(x) x = F.conv2d(x, self.kernel) return x.view(b, c, h, w) class Upsample(nn.Module): def __init__(self, inc, outc, scale_factor=2): super().__init__() self.scale_factor = scale_factor self.up = nn.Upsample(scale_factor=scale_factor, mode='bilinear') self.smooth = Smooth() self.conv = nn.Conv2d(inc, outc, kernel_size=3, stride=1, padding=1) self.mlp = nn.Sequential( nn.Conv2d(outc, 4 * outc, kernel_size=1, stride=1, padding=0), nn.GELU(), nn.Conv2d(4 * outc, outc, kernel_size=1, stride=1, padding=0), ) def forward(self, x): x = self.smooth(self.up(x)) x = self.conv(x) x = self.mlp(x) + x return x def create_model(model): """Create a model for anime2sketch hardcoding the options for simplicity """ norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False) import os cwd = os.getcwd() # 現在のディレクトリを保存 os.chdir(os.path.dirname(__file__)) # このファイルのディレクトリに移動 if model == 'default': model_path = download_file("netG.pth", subfolder="models/Anime2Sketch") ckpt = torch.load(model_path) for key in list(ckpt.keys()): if 'module.' in key: ckpt[key.replace('module.', '')] = ckpt[key] del ckpt[key] net.load_state_dict(ckpt) os.chdir(cwd) # 元のディレクトリに戻る elif model == 'improved': ckpt = torch.load('weights/improved.bin', map_location=torch.device('cpu')) base = net.model.model[1] # swap deconvolution layers with reszie + conv layers for 2x upsampling for _ in range(6): inc, outc = base.model[5].in_channels, base.model[5].out_channels base.model[5] = Upsample(inc, outc) base = base.model[3] net.load_state_dict(ckpt) os.chdir(cwd) # 元のディレクトリに戻る else: raise ValueError(f"model should be one of ['default', 'improved'], but got {model}") return net