import gradio as gr from text_generation import Client # text-generation 0.6.0 eos_token = "" def _concat_messages(messages): message_text = "" for message in messages: if message["role"] == "system": message_text += "<|system|>\n" + message["content"].strip() + "\n" elif message["role"] == "user": message_text += "<|user|>\n" + message["content"].strip() + "\n" elif message["role"] == "assistant": message_text += "<|assistant|>\n" + message["content"].strip() + eos_token + "\n" else: raise ValueError("Invalid role: {}".format(message["role"])) return message_text endpoint_url = "http://ec2-52-193-118-191.ap-northeast-1.compute.amazonaws.com:8080" client = Client(endpoint_url, timeout=120) def generate_response(user_input, max_new_token: 100, top_p, temperature, top_k, do_sample, repetition_penalty): msg = _concat_messages([ {"role": "system", "content": "你是一個由國立台灣大學的NLP實驗室開發的大型語言模型。你基於Transformer架構被訓練,並已經經過大量的台灣中文語料庫的訓練。你的設計目標是理解和生成優雅的繁體中文,並具有跨語境和跨領域的對話能力。使用者可以向你提問任何問題或提出任何話題,並期待從你那裡得到高質量的回答。你應該要盡量幫助使用者解決問題,提供他們需要的資訊,並在適當時候給予建議。"}, {"role": "user", "content": user_input}, ]) msg += "<|assistant|>\n" res = client.generate(msg, stop_sequences=["<|assistant|>", eos_token, "<|system|>", "<|user|>"], max_new_tokens=1000) return [("assistant", res.generated_text)] with gr.Blocks() as demo: # github_banner_path = 'https://raw.githubusercontent.com/ymcui/Chinese-LLaMA-Alpaca/main/pics/banner.png' # gr.HTML(f'

') # gr.Markdown("> 为了促进大模型在中文NLP社区的开放研究,本项目开源了中文LLaMA模型和指令精调的Alpaca大模型。这些模型在原版LLaMA的基础上扩充了中文词表并使用了中文数据进行二次预训练,进一步提升了中文基础语义理解能力。同时,中文Alpaca模型进一步使用了中文指令数据进行精调,显著提升了模型对指令的理解和执行能力。") chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): user_input = gr.Textbox( show_label=False, placeholder="Shift + Enter发送消息...", lines=10).style( container=False) with gr.Column(min_width=32, scale=1): submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): emptyBtn = gr.Button("Clear History") max_new_token = gr.Slider( 0, 4096, value=512, step=1.0, label="Maximum New Token Length", interactive=True) top_p = gr.Slider(0, 1, value=0.9, step=0.01, label="Top P", interactive=True) temperature = gr.Slider( 0, 1, value=0.5, step=0.01, label="Temperature", interactive=True) top_k = gr.Slider(1, 40, value=40, step=1, label="Top K", interactive=True) do_sample = gr.Checkbox( value=True, label="Do Sample", info="use random sample strategy", interactive=True) repetition_penalty = gr.Slider( 1.0, 3.0, value=1.1, step=0.1, label="Repetition Penalty", interactive=True) params = [user_input, chatbot] predict_params = [ chatbot, max_new_token, top_p, temperature, top_k, do_sample, repetition_penalty] submitBtn.click( generate_response, [user_input], [chatbot], queue=False).then( None, None, [user_input], queue=False) user_input.submit( generate_response, [user_input], [chatbot], queue=False).then( None, None, [user_input], queue=False) submitBtn.click(lambda: None, [], [user_input]) emptyBtn.click(lambda: chatbot.reset(), outputs=[chatbot], show_progress=True) demo.launch()