# Copyright (c) Ye Liu. Licensed under the BSD 3-Clause License. import random from functools import partial import clip import decord import gradio as gr import nncore import numpy as np import torch import torchvision.transforms.functional as F from decord import VideoReader from nncore.engine import load_checkpoint from nncore.nn import build_model import pandas as pd TITLE = '🌀R2-Tuning: Efficient Image-to-Video Transfer Learning for Video Temporal Grounding' TITLE_MD = '

🌀R2-Tuning: Efficient Image-to-Video Transfer Learning for Video Temporal Grounding

' DESCRIPTION_MD = 'R2-Tuning is a parameter- and memory-efficient transfer learning method for video temporal grounding. Please find more details in our Tech Report and GitHub Repo.' GUIDE_MD = '### User Guide:\n1. Upload a video or click "random" to sample one.\n2. Input a text query. A good practice is to write a sentence with 5~15 words.\n3. Click "submit" and you\'ll see the moment retrieval and highlight detection results on the right.' CONFIG = 'configs/qvhighlights/r2_tuning_qvhighlights.py' WEIGHT = 'https://huggingface.co/yeliudev/R2-Tuning/resolve/main/checkpoints/r2_tuning_qvhighlights-ed516355.pth' # yapf:disable EXAMPLES = [ ('data/gTAvxnQtjXM_60.0_210.0.mp4', 'A man in a white t shirt wearing a backpack is showing a nearby cathedral.'), ('data/pA6Z-qYhSNg_210.0_360.0.mp4', 'Different Facebook posts on transgender bathrooms are shown.'), ('data/CkWOpyrAXdw_210.0_360.0.mp4', 'Indian girl cleaning her kitchen before cooking.'), ('data/ocLUzCNodj4_360.0_510.0.mp4', 'A woman stands in her bedroom in front of a mirror and talks.'), ('data/HkLfNhgP0TM_660.0_810.0.mp4', 'Woman lays down on the couch while talking to the camera.') ] # yapf:enable def convert_time(seconds): minutes, seconds = divmod(round(max(seconds, 0)), 60) return f'{minutes:02d}:{seconds:02d}' def load_video(video_path, cfg): decord.bridge.set_bridge('torch') vr = VideoReader(video_path) stride = vr.get_avg_fps() / cfg.data.val.fps fm_idx = [min(round(i), len(vr) - 1) for i in np.arange(0, len(vr), stride).tolist()] video = vr.get_batch(fm_idx).permute(0, 3, 1, 2).float() / 255 size = 336 if '336px' in cfg.model.arch else 224 h, w = video.size(-2), video.size(-1) s = min(h, w) x, y = round((h - s) / 2), round((w - s) / 2) video = video[..., x:x + s, y:y + s] video = F.resize(video, size=(size, size)) video = F.normalize(video, (0.481, 0.459, 0.408), (0.269, 0.261, 0.276)) video = video.reshape(video.size(0), -1).unsqueeze(0) return video def init_model(config, checkpoint): cfg = nncore.Config.from_file(config) cfg.model.init = True if checkpoint.startswith('http'): checkpoint = nncore.download(checkpoint, out_dir='checkpoints') model = build_model(cfg.model, dist=False).eval() model = load_checkpoint(model, checkpoint, warning=False) return model, cfg def main(video, query, model, cfg): if len(query) == 0: raise gr.Error('Text query can not be empty.') try: video = load_video(video, cfg) except Exception: raise gr.Error('Failed to load the video.') query = clip.tokenize(query, truncate=True) device = next(model.parameters()).device data = dict(video=video.to(device), query=query.to(device), fps=[cfg.data.val.fps]) with torch.inference_mode(): pred = model(data) mr = pred['_out']['boundary'][:5].cpu().tolist() mr = [[convert_time(p[0]), convert_time(p[1]), round(p[2], 2)] for p in mr] hd = pred['_out']['saliency'].cpu() hd = ((hd - hd.min()) / (hd.max() - hd.min()) * 0.9 + 0.05).tolist() hd = pd.DataFrame(dict(x=range(0, len(hd) * 2, 2), y=hd)) return mr, hd model, cfg = init_model(CONFIG, WEIGHT) fn = partial(main, model=model, cfg=cfg) with gr.Blocks(title=TITLE) as demo: gr.Markdown(TITLE_MD) gr.Markdown(DESCRIPTION_MD) gr.Markdown(GUIDE_MD) with gr.Row(): with gr.Column(): video = gr.Video(label='Video') query = gr.Textbox(label='Text Query') with gr.Row(): random_btn = gr.Button(value='🔮 Random') gr.ClearButton([video, query], value='🗑️ Reset') submit_btn = gr.Button(value='🚀 Submit') with gr.Column(): mr = gr.DataFrame( headers=['Start Time', 'End Time', 'Score'], label='Moment Retrieval') hd = gr.LinePlot( x='x', y='y', x_title='Time (seconds)', y_title='Saliency Score', label='Highlight Detection') random_btn.click(lambda: random.sample(EXAMPLES, 1)[0], None, [video, query]) submit_btn.click(fn, [video, query], [mr, hd]) demo.launch()