from transformers import AutoModel, AutoTokenizer from torch import Tensor from torch import functional as F from src.config import EMBEDDING_MODEL from src.utils import batched class TextEmbedder: def __init__(self, modelname=EMBEDDING_MODEL, max_length=512): self.tokenizer = AutoTokenizer.from_pretrained(modelname) self.model = AutoModel.from_pretrained(modelname) self.max_length = max_length @staticmethod def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] def embed_text(self, text: str | list[str], batch_size=128): if isinstance(text, str): text = [text] outputs = [] for batch in batched(text, n=batch_size): batch_dict = self.tokenizer(batch, max_length=self.max_length, padding=True, truncation=True, return_tensors='pt') output = self.model(**batch_dict) embeddings = self.average_pool(output.last_hidden_state, batch_dict['attention_mask']) # embeddings = F.norm(embeddings, p=2, dim=1) # scores = (embeddings[:1] @ embeddings[1:].T) * 100 embeddings = embeddings.tolist() outputs += embeddings return outputs