# Inversynth Fork ## AMP Team ## Launch instructions : *Optional: outputing your own config file for your VST* ```zsh python -m generators.vst_generator generate ``` *1. Dataset Creation based on config profile* ```zsh python -m generators.vst_generator run --config "your_config_path.json" ``` *2. Model training* ```zsh python -m generators.spectrogram_cnn --epoch "your_epoch_number" --model C6XL ``` Parameter | Default | Description ---|---|--- `--num_examples` | `2000` | Number of examples to create `--name` | `InverSynth` | Naming convention for datasets `--dataset_directory` | `test_datasets` | Directory for datasets `--wavefile_directory` | `test_waves` | Directory to for wave files.
Naming convention applied automatically `--length` | `1.0` | Length of each sample in seconds `--sample_rate` | `16384` | Sample rate (Samples/second) `--sampling_method` | `random` | Method to use for generating examples.
Currently only random, but may
include whole space later Optional | `--regenerate_samples` | | Regenerate the set of points to explore if it
exists (will also force regenerating audio) `--regenerate_audio` | | Regenerate audio files if they exist `--normalise` | | Apply audio normalization This module generates a dataset attempting to recreate the dataset generation
as defined in the [paper](paper/1812.06349.pdf) Selecting an architecture: - `C1`, `C2`, `C3`, `C4`, `C5`, `C6`, `C6XL`