# Inversynth Fork
## AMP Team
## Launch instructions :
*Optional: outputing your own config file for your VST*
```zsh
python -m generators.vst_generator generate
```
*1. Dataset Creation based on config profile*
```zsh
python -m generators.vst_generator run --config "your_config_path.json"
```
*2. Model training*
```zsh
python -m generators.spectrogram_cnn --epoch "your_epoch_number" --model C6XL
```
Parameter | Default | Description
---|---|---
`--num_examples` | `2000` | Number of examples to create
`--name` | `InverSynth` | Naming convention for datasets
`--dataset_directory` | `test_datasets` | Directory for datasets
`--wavefile_directory` | `test_waves` | Directory to for wave files.
Naming convention applied automatically
`--length` | `1.0` | Length of each sample in seconds
`--sample_rate` | `16384` | Sample rate (Samples/second)
`--sampling_method` | `random` | Method to use for generating examples.
Currently only random, but may
include whole space later
Optional |
`--regenerate_samples` | | Regenerate the set of points to explore if it
exists (will also force regenerating audio)
`--regenerate_audio` | | Regenerate audio files if they exist
`--normalise` | | Apply audio normalization
This module generates a dataset attempting to recreate the dataset generation
as defined in the [paper](paper/1812.06349.pdf)
Selecting an architecture:
- `C1`, `C2`, `C3`, `C4`, `C5`, `C6`, `C6XL`