infer-vst / back /README.md
Yann
push backend
86694c3

Inversynth Fork

AMP Team

Launch instructions :

Optional: outputing your own config file for your VST

python -m generators.vst_generator generate

1. Dataset Creation based on config profile

python -m generators.vst_generator run --config "your_config_path.json"

2. Model training

python -m generators.spectrogram_cnn --epoch "your_epoch_number" --model C6XL
Parameter Default Description
--num_examples 2000 Number of examples to create
--name InverSynth Naming convention for datasets
--dataset_directory test_datasets Directory for datasets
--wavefile_directory test_waves Directory to for wave files.
Naming convention applied automatically
--length 1.0 Length of each sample in seconds
--sample_rate 16384 Sample rate (Samples/second)
--sampling_method random Method to use for generating examples.
Currently only random, but may
include whole space later
Optional
--regenerate_samples Regenerate the set of points to explore if it
exists (will also force regenerating audio)
--regenerate_audio Regenerate audio files if they exist
--normalise Apply audio normalization

This module generates a dataset attempting to recreate the dataset generation
as defined in the paper

Selecting an architecture:

  • C1, C2, C3, C4, C5, C6, C6XL