import numpy as np import cv2 from PIL import Image as PIL_Image from io import BytesIO class ImageSegmentation(): def __init__(self, x, threshold_factor): self.img = x self.threshold_factor = threshold_factor self.segmented_img = self.segmentation() def img_to_png(ima, cvt=None): if cvt: ima = cv2.cvtColor(ima, cvt) im = PIL_Image.fromarray(ima) bio = BytesIO() im.save(bio, format='png') return bio.getvalue() def segmentation(self): cv2.startWindowThread() gray = cv2.cvtColor(self.img,cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2) # sure background area sure_bg = cv2.dilate(opening,kernel,iterations=3) # Finding sure foreground area dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5) _, sure_fg = cv2.threshold(dist_transform,self.threshold_factor*dist_transform.max(),255,0) # Finding unknown region sure_fg = np.uint8(sure_fg) unknown = cv2.subtract(sure_bg,sure_fg) # Marker labelling _, markers0 = cv2.connectedComponents(sure_fg) # Add one to all labels so that sure background is not 0, but 1 markers = markers0+1 # Now, mark the region of unknown with zero markers[unknown==255] = 0 markers = cv2.watershed(self.img,markers) self.img[markers == -1] = [255,0,0] # 將 markers 範圍縮放到 0-255 並轉換為 uint8 類型 markers_scaled = (markers - markers.min()) / (markers.max() - markers.min()) * 255 markers_scaled = markers_scaled.astype(np.uint8) # 使用 applyColorMap 生成彩色圖像 markers_colored = cv2.applyColorMap(markers_scaled, cv2.COLORMAP_JET) return markers_colored # 返回彩色分割結果圖