import os import sys import gradio as gr import math import matplotlib.pyplot as plt import requests import fileinput import firebase_admin from firebase_admin import credentials from firebase_admin import firestore import gradio as gr import json import math import requests vidOut = "results/results" uvqOut = "results/modified_prompts_eval" evalOut = "evaluation_results" num_of_vid = 3 vid_length = 2 uvq_threshold = 3.8 fps = 24 # Generate the scores in csv files def genScore(): for i in range(1, num_of_vid+1): fileindex = f"{i:04d}" os.system( f'python3 ./uvq/uvq_main.py --input_files="{fileindex},2, {vidOut}/{fileindex}.mp4" --output_dir {uvqOut} --model_dir ./uvq/models' ) def getScore(filename): # MOS_score defines the output of the uvq score lines = str(filename).split('\n') last_line = lines[-1] MOS_score = last_line.split(',')[-1] MOS_score = MOS_score[:-2] return MOS_score # MOS_score defines the Mean Opinion Score of prediction, if the video's MOS exceeds the threshold then we directly use this video def chooseBestVideo(): MOS_score_high = 0 preferred_output = "" chosen_idx = 0 for i in range(1, num_of_vid+1): '''We loop thru this current processed video''' filedir = f"{i:04d}" filename = f"{i:04d}_uvq.csv" with open(os.path.join(uvqOut, filedir, filename), 'r') as file: MOS = file.read().strip() MOS_score = getScore(MOS) print("Video Index:", f"{i:04d}", "Score:", MOS_score) # if the MOS_score is higher than the previous video, we choose this video as our preferred video output if float(MOS_score) > float(MOS_score_high) or float(MOS_score) > uvq_threshold: MOS_score_high = MOS_score preferred_output = filename chosen_idx = i if float(MOS_score) > uvq_threshold: break return chosen_idx # print(MOS_score_high) # print(preferred_output) def extract_scores_from_json(json_path): with open(json_path) as file: data = json.load(file) for key, value in data.items(): if isinstance(value, list) and len(value) > 1 and isinstance(value[0], float): motion_score = value[0] return motion_score def VBench_eval(vid_filename): # vid_filename: video filename without .mp4 os.system( f'python VBench/evaluate.py --dimension "motion_smoothness" --videos_path {os.path.join(vidOut, vid_filename)}.mp4 --custom_input --output_filename {vid_filename}' ) eval_file_path = os.path.join( evalOut, f"{vid_filename}_eval_results.json") motion_score = extract_scores_from_json(eval_file_path) return motion_score def interpolation(chosen_idx, fps): vid_filename = f"{chosen_idx:04d}.mp4" os.chdir("ECCV2022-RIFE") os.system( f'python3 inference_video.py --exp=2 --video={os.path.join(vidOut, vid_filename)} --fps {fps}' ) os.chdir("../") out_name = f"{chosen_idx:04d}_4X_{fps}fps.mp4" return out_name # call the GPT API here def call_gpt_api(prompt, isSentence=False): api_key = "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" response = requests.post( 'https://api.openai.com/v1/chat/completions', headers={ 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' }, json={ 'messages': [{'role': 'system', 'content': 'You are a helpful assistant.'}, {'role': 'user', 'content': prompt}], 'model': 'gpt-3.5-turbo', # 'prompt': prompt, 'temperature': 0.4, 'max_tokens': 200 }) response_json = response.json() choices = response_json['choices'] contents = [choice['message']['content'] for choice in choices] contents = [ sentence for sublist in contents for sentence in sublist.split('\n')] # Remove the leading number and dot from each sentence sentences = [content.lstrip('1234567890.- ') for content in contents] if len(sentences) > 2 and isSentence: sentences = sentences[1:] return sentences # Initialize Firebase Admin SDK cred = credentials.Certificate( "final-year-project-443dd-df6f48af0796.json") firebase_admin.initialize_app(cred) # Initialize Firestore client db = firestore.client() def retrieve_user_feedback(): # Retrieve user feedback from Firestore feedback_collection = db.collection("user_feedbacks") feedback_docs = feedback_collection.get() feedback_text = [] experience = [] for doc in feedback_docs: data = doc.to_dict() feedback_text.append(data.get('feedback_text', None)) experience.append(data.get('experience', None)) return feedback_text, experience feedback_text, experience = retrieve_user_feedback() # print("Feedback Text:", feedback_text) # print("Experience:", experience) def store_user_feedback(feedback_text, experience): # Get a reference to the Firestore collection feedback_collection = db.collection("user_feedbacks") # Create a new document with feedback_text and experience fields feedback_collection.add({ 'feedback_text': feedback_text, 'experience': experience }) return t2v_examples = [ ['A tiger walks in the forest, photorealistic, 4k, high definition'], ['an elephant is walking under the sea, 4K, high definition'], ['an astronaut riding a horse in outer space'], ['a monkey is playing a piano'], ['A fire is burning on a candle'], ['a horse is drinking in the river'], ['Robot dancing in times square'], ] def generate_output(input_text, output_video_1, fps, examples): def generate_output_fn(input_text, output_video_1, fps, examples): if input_text == "": return input_text, output_video_1, examples output = call_gpt_api( prompt=f"Generate 2 similar prompts and add some reasonable words to the given prompt and not change the meaning, each within 30 words: {input_text}", isSentence=True) output.append(input_text) with open("prompts/test_prompts.txt", 'w') as file: for i, sentence in enumerate(output): if i < len(output) - 1: file.write(sentence + '\n') else: file.write(sentence) os.system( f'sh {os.path.join("scripts", "run_text2video.sh")}') # Connect the video output and return the video corresponding link genScore() chosen_idx = chooseBestVideo() chosen_vid_path = interpolation(chosen_idx, fps) chosen_vid_path = f"{vidOut}/{chosen_vid_path}" output_video_1 = gr.Video( value=chosen_vid_path, show_download_button=True) examples_list = call_gpt_api( prompt=f"Generate 5 similar prompts that makes a storyline coming after the given input, each within 10 words: {input_text}") examples = [] for prompt in examples_list: examples.append([prompt]) input_text = "" return input_text, output_video_1, examples return generate_output_fn(input_text, output_video_1, fps, examples) def t2v_demo(result_dir='./tmp/'): with gr.Blocks() as videocrafter_iface: gr.Markdown("