import os import cv2 import torch import argparse import numpy as np from tqdm import tqdm from torch.nn import functional as F import warnings import _thread import skvideo.io from queue import Queue, Empty from model.pytorch_msssim import ssim_matlab warnings.filterwarnings("ignore") def transferAudio(sourceVideo, targetVideo): import shutil import moviepy.editor tempAudioFileName = "./temp/audio.mkv" # split audio from original video file and store in "temp" directory if True: # clear old "temp" directory if it exits if os.path.isdir("temp"): # remove temp directory shutil.rmtree("temp") # create new "temp" directory os.makedirs("temp") # extract audio from video os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName)) targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1] os.rename(targetVideo, targetNoAudio) # combine audio file and new video file os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac tempAudioFileName = "./temp/audio.m4a" os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName)) os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo)) if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format os.rename(targetNoAudio, targetVideo) print("Audio transfer failed. Interpolated video will have no audio") else: print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.") # remove audio-less video os.remove(targetNoAudio) else: os.remove(targetNoAudio) # remove temp directory shutil.rmtree("temp") parser = argparse.ArgumentParser(description='Interpolation for a pair of images') parser.add_argument('--video', dest='video', type=str, default=None) parser.add_argument('--output', dest='output', type=str, default=None) parser.add_argument('--img', dest='img', type=str, default=None) parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video') parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores') parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video') parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video') parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing') parser.add_argument('--fps', dest='fps', type=int, default=None) parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs') parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension') parser.add_argument('--exp', dest='exp', type=int, default=1) args = parser.parse_args() assert (not args.video is None or not args.img is None) if args.skip: print("skip flag is abandoned, please refer to issue #207.") if args.UHD and args.scale==1.0: args.scale = 0.5 assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0] if not args.img is None: args.png = True device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.set_grad_enabled(False) if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True if(args.fp16): torch.set_default_tensor_type(torch.cuda.HalfTensor) try: try: try: from model.RIFE_HDv2 import Model model = Model() model.load_model(args.modelDir, -1) print("Loaded v2.x HD model.") except: from train_log.RIFE_HDv3 import Model model = Model() model.load_model(args.modelDir, -1) print("Loaded v3.x HD model.") except: from model.RIFE_HD import Model model = Model() model.load_model(args.modelDir, -1) print("Loaded v1.x HD model") except: from model.RIFE import Model model = Model() model.load_model(args.modelDir, -1) print("Loaded ArXiv-RIFE model") model.eval() model.device() if not args.video is None: videoCapture = cv2.VideoCapture(args.video) fps = videoCapture.get(cv2.CAP_PROP_FPS) tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) videoCapture.release() if args.fps is None: fpsNotAssigned = True args.fps = fps * (2 ** args.exp) else: fpsNotAssigned = False videogen = skvideo.io.vreader(args.video) lastframe = next(videogen) fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') video_path_wo_ext, ext = os.path.splitext(args.video) print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps)) if args.png == False and fpsNotAssigned == True: print("The audio will be merged after interpolation process") else: print("Will not merge audio because using png or fps flag!") else: videogen = [] for f in os.listdir(args.img): if 'png' in f: videogen.append(f) tot_frame = len(videogen) videogen.sort(key= lambda x:int(x[:-4])) lastframe = cv2.imread(os.path.join(args.img, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() videogen = videogen[1:] h, w, _ = lastframe.shape vid_out_name = None vid_out = None if args.png: if not os.path.exists('vid_out'): os.mkdir('vid_out') else: if args.output is not None: vid_out_name = args.output else: vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, (2 ** args.exp), int(np.round(args.fps)), args.ext) vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h)) def clear_write_buffer(user_args, write_buffer): cnt = 0 while True: item = write_buffer.get() if item is None: break if user_args.png: cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1]) cnt += 1 else: vid_out.write(item[:, :, ::-1]) def build_read_buffer(user_args, read_buffer, videogen): try: for frame in videogen: if not user_args.img is None: frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy() if user_args.montage: frame = frame[:, left: left + w] read_buffer.put(frame) except: pass read_buffer.put(None) def make_inference(I0, I1, n): global model middle = model.inference(I0, I1, args.scale) if n == 1: return [middle] first_half = make_inference(I0, middle, n=n//2) second_half = make_inference(middle, I1, n=n//2) if n%2: return [*first_half, middle, *second_half] else: return [*first_half, *second_half] def pad_image(img): if(args.fp16): return F.pad(img, padding).half() else: return F.pad(img, padding) if args.montage: left = w // 4 w = w // 2 tmp = max(32, int(32 / args.scale)) ph = ((h - 1) // tmp + 1) * tmp pw = ((w - 1) // tmp + 1) * tmp padding = (0, pw - w, 0, ph - h) pbar = tqdm(total=tot_frame) if args.montage: lastframe = lastframe[:, left: left + w] write_buffer = Queue(maxsize=500) read_buffer = Queue(maxsize=500) _thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen)) _thread.start_new_thread(clear_write_buffer, (args, write_buffer)) I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. I1 = pad_image(I1) temp = None # save lastframe when processing static frame while True: if temp is not None: frame = temp temp = None else: frame = read_buffer.get() if frame is None: break I0 = I1 I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. I1 = pad_image(I1) I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False) I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) break_flag = False if ssim > 0.996: frame = read_buffer.get() # read a new frame if frame is None: break_flag = True frame = lastframe else: temp = frame I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255. I1 = pad_image(I1) I1 = model.inference(I0, I1, args.scale) I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w] if ssim < 0.2: output = [] for i in range((2 ** args.exp) - 1): output.append(I0) ''' output = [] step = 1 / (2 ** args.exp) alpha = 0 for i in range((2 ** args.exp) - 1): alpha += step beta = 1-alpha output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.) ''' else: output = make_inference(I0, I1, 2**args.exp-1) if args.exp else [] if args.montage: write_buffer.put(np.concatenate((lastframe, lastframe), 1)) for mid in output: mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1)) else: write_buffer.put(lastframe) for mid in output: mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0))) write_buffer.put(mid[:h, :w]) pbar.update(1) lastframe = frame if break_flag: break if args.montage: write_buffer.put(np.concatenate((lastframe, lastframe), 1)) else: write_buffer.put(lastframe) import time while(not write_buffer.empty()): time.sleep(0.1) pbar.close() if not vid_out is None: vid_out.release() # move audio to new video file if appropriate if args.png == False and fpsNotAssigned == True and not args.video is None: try: transferAudio(args.video, vid_out_name) except: print("Audio transfer failed. Interpolated video will have no audio") targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1] os.rename(targetNoAudio, vid_out_name)