# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the Creative Commons Attribution-NonCommercial # 4.0 International License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. import os import sys import glob import datetime import pickle import re import numpy as np from collections import OrderedDict import scipy.ndimage import PIL.Image import config import dataset import legacy #---------------------------------------------------------------------------- # Convenience wrappers for pickle that are able to load data produced by # older versions of the code. def load_pkl(filename): with open(filename, 'rb') as file: return legacy.LegacyUnpickler(file, encoding='latin1').load() def save_pkl(obj, filename): with open(filename, 'wb') as file: pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) #---------------------------------------------------------------------------- # Image utils. def adjust_dynamic_range(data, drange_in, drange_out): if drange_in != drange_out: scale = (np.float32(drange_out[1]) - np.float32(drange_out[0])) / (np.float32(drange_in[1]) - np.float32(drange_in[0])) bias = (np.float32(drange_out[0]) - np.float32(drange_in[0]) * scale) data = data * scale + bias return data def create_image_grid(images, grid_size=None): assert images.ndim == 3 or images.ndim == 4 num, img_w, img_h = images.shape[0], images.shape[-1], images.shape[-2] if grid_size is not None: grid_w, grid_h = tuple(grid_size) else: grid_w = max(int(np.ceil(np.sqrt(num))), 1) grid_h = max((num - 1) // grid_w + 1, 1) grid = np.zeros(list(images.shape[1:-2]) + [grid_h * img_h, grid_w * img_w], dtype=images.dtype) for idx in range(num): x = (idx % grid_w) * img_w y = (idx // grid_w) * img_h grid[..., y : y + img_h, x : x + img_w] = images[idx] return grid def convert_to_pil_image(image, drange=[0,1]): assert image.ndim == 2 or image.ndim == 3 if image.ndim == 3: if image.shape[0] == 1: image = image[0] # grayscale CHW => HW else: image = image.transpose(1, 2, 0) # CHW -> HWC image = adjust_dynamic_range(image, drange, [0,255]) image = np.rint(image).clip(0, 255).astype(np.uint8) format = 'RGB' if image.ndim == 3 else 'L' return PIL.Image.fromarray(image, format) def save_image(image, filename, drange=[0,1], quality=95): img = convert_to_pil_image(image, drange) if '.jpg' in filename: img.save(filename,"JPEG", quality=quality, optimize=True) else: img.save(filename) def save_image_grid(images, filename, drange=[0,1], grid_size=None): convert_to_pil_image(create_image_grid(images, grid_size), drange).save(filename) #---------------------------------------------------------------------------- # Logging of stdout and stderr to a file. class OutputLogger(object): def __init__(self): self.file = None self.buffer = '' def set_log_file(self, filename, mode='wt'): assert self.file is None self.file = open(filename, mode) if self.buffer is not None: self.file.write(self.buffer) self.buffer = None def write(self, data): if self.file is not None: self.file.write(data) if self.buffer is not None: self.buffer += data def flush(self): if self.file is not None: self.file.flush() class TeeOutputStream(object): def __init__(self, child_streams, autoflush=False): self.child_streams = child_streams self.autoflush = autoflush def write(self, data): for stream in self.child_streams: stream.write(data) if self.autoflush: self.flush() def flush(self): for stream in self.child_streams: stream.flush() output_logger = None def init_output_logging(): global output_logger if output_logger is None: output_logger = OutputLogger() sys.stdout = TeeOutputStream([sys.stdout, output_logger], autoflush=True) sys.stderr = TeeOutputStream([sys.stderr, output_logger], autoflush=True) def set_output_log_file(filename, mode='wt'): if output_logger is not None: output_logger.set_log_file(filename, mode) #---------------------------------------------------------------------------- # Reporting results. def create_result_subdir(result_dir, desc): # Select run ID and create subdir. while True: run_id = 0 for fname in glob.glob(os.path.join(result_dir, '*')): try: fbase = os.path.basename(fname) ford = int(fbase[:fbase.find('-')]) run_id = max(run_id, ford + 1) except ValueError: pass result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, desc)) try: os.makedirs(result_subdir) break except OSError: if os.path.isdir(result_subdir): continue raise print("Saving results to", result_subdir) set_output_log_file(os.path.join(result_subdir, 'log.txt')) # Export config. try: with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout: for k, v in sorted(config.__dict__.items()): if not k.startswith('_'): fout.write("%s = %s\n" % (k, str(v))) except: pass return result_subdir def format_time(seconds): s = int(np.rint(seconds)) if s < 60: return '%ds' % (s) elif s < 60*60: return '%dm %02ds' % (s // 60, s % 60) elif s < 24*60*60: return '%dh %02dm %02ds' % (s // (60*60), (s // 60) % 60, s % 60) else: return '%dd %02dh %02dm' % (s // (24*60*60), (s // (60*60)) % 24, (s // 60) % 60) #---------------------------------------------------------------------------- # Locating results. def locate_result_subdir(run_id_or_result_subdir): if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir): return run_id_or_result_subdir searchdirs = [] searchdirs += [''] searchdirs += ['results'] searchdirs += ['networks'] for searchdir in searchdirs: dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir) dir = os.path.join(dir, str(run_id_or_result_subdir)) if os.path.isdir(dir): return dir prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir) dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*'))) dirs = [dir for dir in dirs if os.path.isdir(dir)] if len(dirs) == 1: return dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir) def list_network_pkls(run_id_or_result_subdir, include_final=True): result_subdir = locate_result_subdir(run_id_or_result_subdir) pkls = sorted(glob.glob(os.path.join(result_subdir, 'network-*.pkl'))) if len(pkls) >= 1 and os.path.basename(pkls[0]) == 'network-final.pkl': if include_final: pkls.append(pkls[0]) del pkls[0] return pkls def locate_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot=None): if isinstance(run_id_or_result_subdir_or_network_pkl, str) and os.path.isfile(run_id_or_result_subdir_or_network_pkl): return run_id_or_result_subdir_or_network_pkl pkls = list_network_pkls(run_id_or_result_subdir_or_network_pkl) if len(pkls) >= 1 and snapshot is None: return pkls[-1] for pkl in pkls: try: name = os.path.splitext(os.path.basename(pkl))[0] number = int(name.split('-')[-1]) if number == snapshot: return pkl except ValueError: pass except IndexError: pass raise IOError('Cannot locate network pkl for snapshot', snapshot) def get_id_string_for_network_pkl(network_pkl): p = network_pkl.replace('.pkl', '').replace('\\', '/').split('/') return '-'.join(p[max(len(p) - 2, 0):]) #---------------------------------------------------------------------------- # Loading and using trained networks. def load_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot=None): return load_pkl(locate_network_pkl(run_id_or_result_subdir_or_network_pkl, snapshot)) def random_latents(num_latents, G, random_state=None): if random_state is not None: return random_state.randn(num_latents, *G.input_shape[1:]).astype(np.float32) else: return np.random.randn(num_latents, *G.input_shape[1:]).astype(np.float32) def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment result_subdir = locate_result_subdir(run_id) # Parse config.txt. parsed_cfg = dict() with open(os.path.join(result_subdir, 'config.txt'), 'rt') as f: for line in f: if line.startswith('dataset =') or line.startswith('train ='): exec(line, parsed_cfg, parsed_cfg) dataset_cfg = parsed_cfg.get('dataset', dict()) train_cfg = parsed_cfg.get('train', dict()) mirror_augment = train_cfg.get('mirror_augment', False) # Handle legacy options. if 'h5_path' in dataset_cfg: dataset_cfg['tfrecord_dir'] = dataset_cfg.pop('h5_path').replace('.h5', '') if 'mirror_augment' in dataset_cfg: mirror_augment = dataset_cfg.pop('mirror_augment') if 'max_labels' in dataset_cfg: v = dataset_cfg.pop('max_labels') if v is None: v = 0 if v == 'all': v = 'full' dataset_cfg['max_label_size'] = v if 'max_images' in dataset_cfg: dataset_cfg.pop('max_images') # Handle legacy dataset names. v = dataset_cfg['tfrecord_dir'] v = v.replace('-32x32', '').replace('-32', '') v = v.replace('-128x128', '').replace('-128', '') v = v.replace('-256x256', '').replace('-256', '') v = v.replace('-1024x1024', '').replace('-1024', '') v = v.replace('celeba-hq', 'celebahq') v = v.replace('cifar-10', 'cifar10') v = v.replace('cifar-100', 'cifar100') v = v.replace('mnist-rgb', 'mnistrgb') v = re.sub('lsun-100k-([^-]*)', 'lsun-\\1-100k', v) v = re.sub('lsun-full-([^-]*)', 'lsun-\\1-full', v) dataset_cfg['tfrecord_dir'] = v # Load dataset. dataset_cfg.update(kwargs) dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **dataset_cfg) return dataset_obj, mirror_augment def apply_mirror_augment(minibatch): mask = np.random.rand(minibatch.shape[0]) < 0.5 minibatch = np.array(minibatch) minibatch[mask] = minibatch[mask, :, :, ::-1] return minibatch #---------------------------------------------------------------------------- # Text labels. _text_label_cache = OrderedDict() def draw_text_label(img, text, x, y, alignx=0.5, aligny=0.5, color=255, opacity=1.0, glow_opacity=1.0, **kwargs): color = np.array(color).flatten().astype(np.float32) assert img.ndim == 3 and img.shape[2] == color.size or color.size == 1 alpha, glow = setup_text_label(text, **kwargs) xx, yy = int(np.rint(x - alpha.shape[1] * alignx)), int(np.rint(y - alpha.shape[0] * aligny)) xb, yb = max(-xx, 0), max(-yy, 0) xe, ye = min(alpha.shape[1], img.shape[1] - xx), min(alpha.shape[0], img.shape[0] - yy) img = np.array(img) slice = img[yy+yb : yy+ye, xx+xb : xx+xe, :] slice[:] = slice * (1.0 - (1.0 - (1.0 - alpha[yb:ye, xb:xe]) * (1.0 - glow[yb:ye, xb:xe] * glow_opacity)) * opacity)[:, :, np.newaxis] slice[:] = slice + alpha[yb:ye, xb:xe, np.newaxis] * (color * opacity)[np.newaxis, np.newaxis, :] return img def setup_text_label(text, font='Calibri', fontsize=32, padding=6, glow_size=2.0, glow_coef=3.0, glow_exp=2.0, cache_size=100): # => (alpha, glow) # Lookup from cache. key = (text, font, fontsize, padding, glow_size, glow_coef, glow_exp) if key in _text_label_cache: value = _text_label_cache[key] del _text_label_cache[key] # LRU policy _text_label_cache[key] = value return value # Limit cache size. while len(_text_label_cache) >= cache_size: _text_label_cache.popitem(last=False) # Render text. import moviepy.editor # pip install moviepy alpha = moviepy.editor.TextClip(text, font=font, fontsize=fontsize).mask.make_frame(0) alpha = np.pad(alpha, padding, mode='constant', constant_values=0.0) glow = scipy.ndimage.gaussian_filter(alpha, glow_size) glow = 1.0 - np.maximum(1.0 - glow * glow_coef, 0.0) ** glow_exp # Add to cache. value = (alpha, glow) _text_label_cache[key] = value return value #----------------------------------------------------------------------------