Spaces:
Runtime error
Runtime error
File size: 12,851 Bytes
4d6b877 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# python3.7
"""Contains the implementation of generator described in ProgressiveGAN.
Different from the official tensorflow model in folder `pggan_tf_official`, this
is a simple pytorch version which only contains the generator part. This class
is specially used for inference.
For more details, please check the original paper:
https://arxiv.org/pdf/1710.10196.pdf
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = ['PGGANGeneratorModel']
# Defines a dictionary, which maps the target resolution of the final generated
# image to numbers of filters used in each convolutional layer in sequence.
_RESOLUTIONS_TO_CHANNELS = {
8: [512, 512, 512],
16: [512, 512, 512, 512],
32: [512, 512, 512, 512, 512],
64: [512, 512, 512, 512, 512, 256],
128: [512, 512, 512, 512, 512, 256, 128],
256: [512, 512, 512, 512, 512, 256, 128, 64],
512: [512, 512, 512, 512, 512, 256, 128, 64, 32],
1024: [512, 512, 512, 512, 512, 256, 128, 64, 32, 16],
}
# Variable mapping from pytorch model to official tensorflow model.
_PGGAN_PTH_VARS_TO_TF_VARS = {
'lod': 'lod', # []
'layer0.conv.weight': '4x4/Dense/weight', # [512, 512, 4, 4]
'layer0.wscale.bias': '4x4/Dense/bias', # [512]
'layer1.conv.weight': '4x4/Conv/weight', # [512, 512, 3, 3]
'layer1.wscale.bias': '4x4/Conv/bias', # [512]
'layer2.conv.weight': '8x8/Conv0/weight', # [512, 512, 3, 3]
'layer2.wscale.bias': '8x8/Conv0/bias', # [512]
'layer3.conv.weight': '8x8/Conv1/weight', # [512, 512, 3, 3]
'layer3.wscale.bias': '8x8/Conv1/bias', # [512]
'layer4.conv.weight': '16x16/Conv0/weight', # [512, 512, 3, 3]
'layer4.wscale.bias': '16x16/Conv0/bias', # [512]
'layer5.conv.weight': '16x16/Conv1/weight', # [512, 512, 3, 3]
'layer5.wscale.bias': '16x16/Conv1/bias', # [512]
'layer6.conv.weight': '32x32/Conv0/weight', # [512, 512, 3, 3]
'layer6.wscale.bias': '32x32/Conv0/bias', # [512]
'layer7.conv.weight': '32x32/Conv1/weight', # [512, 512, 3, 3]
'layer7.wscale.bias': '32x32/Conv1/bias', # [512]
'layer8.conv.weight': '64x64/Conv0/weight', # [256, 512, 3, 3]
'layer8.wscale.bias': '64x64/Conv0/bias', # [256]
'layer9.conv.weight': '64x64/Conv1/weight', # [256, 256, 3, 3]
'layer9.wscale.bias': '64x64/Conv1/bias', # [256]
'layer10.conv.weight': '128x128/Conv0/weight', # [128, 256, 3, 3]
'layer10.wscale.bias': '128x128/Conv0/bias', # [128]
'layer11.conv.weight': '128x128/Conv1/weight', # [128, 128, 3, 3]
'layer11.wscale.bias': '128x128/Conv1/bias', # [128]
'layer12.conv.weight': '256x256/Conv0/weight', # [64, 128, 3, 3]
'layer12.wscale.bias': '256x256/Conv0/bias', # [64]
'layer13.conv.weight': '256x256/Conv1/weight', # [64, 64, 3, 3]
'layer13.wscale.bias': '256x256/Conv1/bias', # [64]
'layer14.conv.weight': '512x512/Conv0/weight', # [32, 64, 3, 3]
'layer14.wscale.bias': '512x512/Conv0/bias', # [32]
'layer15.conv.weight': '512x512/Conv1/weight', # [32, 32, 3, 3]
'layer15.wscale.bias': '512x512/Conv1/bias', # [32]
'layer16.conv.weight': '1024x1024/Conv0/weight', # [16, 32, 3, 3]
'layer16.wscale.bias': '1024x1024/Conv0/bias', # [16]
'layer17.conv.weight': '1024x1024/Conv1/weight', # [16, 16, 3, 3]
'layer17.wscale.bias': '1024x1024/Conv1/bias', # [16]
'output0.conv.weight': 'ToRGB_lod8/weight', # [3, 512, 1, 1]
'output0.wscale.bias': 'ToRGB_lod8/bias', # [3]
'output1.conv.weight': 'ToRGB_lod7/weight', # [3, 512, 1, 1]
'output1.wscale.bias': 'ToRGB_lod7/bias', # [3]
'output2.conv.weight': 'ToRGB_lod6/weight', # [3, 512, 1, 1]
'output2.wscale.bias': 'ToRGB_lod6/bias', # [3]
'output3.conv.weight': 'ToRGB_lod5/weight', # [3, 512, 1, 1]
'output3.wscale.bias': 'ToRGB_lod5/bias', # [3]
'output4.conv.weight': 'ToRGB_lod4/weight', # [3, 256, 1, 1]
'output4.wscale.bias': 'ToRGB_lod4/bias', # [3]
'output5.conv.weight': 'ToRGB_lod3/weight', # [3, 128, 1, 1]
'output5.wscale.bias': 'ToRGB_lod3/bias', # [3]
'output6.conv.weight': 'ToRGB_lod2/weight', # [3, 64, 1, 1]
'output6.wscale.bias': 'ToRGB_lod2/bias', # [3]
'output7.conv.weight': 'ToRGB_lod1/weight', # [3, 32, 1, 1]
'output7.wscale.bias': 'ToRGB_lod1/bias', # [3]
'output8.conv.weight': 'ToRGB_lod0/weight', # [3, 16, 1, 1]
'output8.wscale.bias': 'ToRGB_lod0/bias', # [3]
}
class PGGANGeneratorModel(nn.Module):
"""Defines the generator module in ProgressiveGAN.
Note that the generated images are with RGB color channels with range [-1, 1].
"""
def __init__(self,
resolution=1024,
fused_scale=False,
output_channels=3):
"""Initializes the generator with basic settings.
Args:
resolution: The resolution of the final output image. (default: 1024)
fused_scale: Whether to fused `upsample` and `conv2d` together, resulting
in `conv2_transpose`. (default: False)
output_channels: Number of channels of the output image. (default: 3)
Raises:
ValueError: If the input `resolution` is not supported.
"""
super().__init__()
try:
self.channels = _RESOLUTIONS_TO_CHANNELS[resolution]
except KeyError:
raise ValueError(f'Invalid resolution: {resolution}!\n'
f'Resolutions allowed: '
f'{list(_RESOLUTIONS_TO_CHANNELS)}.')
assert len(self.channels) == int(np.log2(resolution))
self.resolution = resolution
self.fused_scale = fused_scale
self.output_channels = output_channels
for block_idx in range(1, len(self.channels)):
if block_idx == 1:
self.add_module(
f'layer{2 * block_idx - 2}',
ConvBlock(in_channels=self.channels[block_idx - 1],
out_channels=self.channels[block_idx],
kernel_size=4,
padding=3))
else:
self.add_module(
f'layer{2 * block_idx - 2}',
ConvBlock(in_channels=self.channels[block_idx - 1],
out_channels=self.channels[block_idx],
upsample=True,
fused_scale=self.fused_scale))
self.add_module(
f'layer{2 * block_idx - 1}',
ConvBlock(in_channels=self.channels[block_idx],
out_channels=self.channels[block_idx]))
self.add_module(
f'output{block_idx - 1}',
ConvBlock(in_channels=self.channels[block_idx],
out_channels=self.output_channels,
kernel_size=1,
padding=0,
wscale_gain=1.0,
activation_type='linear'))
self.upsample = ResolutionScalingLayer()
self.lod = nn.Parameter(torch.zeros(()))
self.pth_to_tf_var_mapping = {}
for pth_var_name, tf_var_name in _PGGAN_PTH_VARS_TO_TF_VARS.items():
if self.fused_scale and 'Conv0' in tf_var_name:
pth_var_name = pth_var_name.replace('conv.weight', 'weight')
tf_var_name = tf_var_name.replace('Conv0', 'Conv0_up')
self.pth_to_tf_var_mapping[pth_var_name] = tf_var_name
def forward(self, x):
if len(x.shape) != 2:
raise ValueError(f'The input tensor should be with shape [batch_size, '
f'noise_dim], but {x.shape} received!')
x = x.view(x.shape[0], x.shape[1], 1, 1)
lod = self.lod.cpu().tolist()
for block_idx in range(1, len(self.channels)):
if block_idx + lod < len(self.channels):
x = self.__getattr__(f'layer{2 * block_idx - 2}')(x)
x = self.__getattr__(f'layer{2 * block_idx - 1}')(x)
image = self.__getattr__(f'output{block_idx - 1}')(x)
else:
image = self.upsample(image)
return image
class PixelNormLayer(nn.Module):
"""Implements pixel-wise feature vector normalization layer."""
def __init__(self, epsilon=1e-8):
super().__init__()
self.epsilon = epsilon
def forward(self, x):
return x / torch.sqrt(torch.mean(x**2, dim=1, keepdim=True) + self.epsilon)
class ResolutionScalingLayer(nn.Module):
"""Implements the resolution scaling layer.
Basically, this layer can be used to upsample or downsample feature maps from
spatial domain with nearest neighbor interpolation.
"""
def __init__(self, scale_factor=2):
super().__init__()
self.scale_factor = scale_factor
def forward(self, x):
return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
class WScaleLayer(nn.Module):
"""Implements the layer to scale weight variable and add bias.
Note that, the weight variable is trained in `nn.Conv2d` layer, and only
scaled with a constant number, which is not trainable, in this layer. However,
the bias variable is trainable in this layer.
"""
def __init__(self, in_channels, out_channels, kernel_size, gain=np.sqrt(2.0)):
super().__init__()
fan_in = in_channels * kernel_size * kernel_size
self.scale = gain / np.sqrt(fan_in)
self.bias = nn.Parameter(torch.zeros(out_channels))
def forward(self, x):
return x * self.scale + self.bias.view(1, -1, 1, 1)
class ConvBlock(nn.Module):
"""Implements the convolutional block used in ProgressiveGAN.
Basically, this block executes pixel-wise normalization layer, upsampling
layer (if needed), convolutional layer, weight-scale layer, and activation
layer in sequence.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dilation=1,
add_bias=False,
upsample=False,
fused_scale=False,
wscale_gain=np.sqrt(2.0),
activation_type='lrelu'):
"""Initializes the class with block settings.
Args:
in_channels: Number of channels of the input tensor fed into this block.
out_channels: Number of channels (kernels) of the output tensor.
kernel_size: Size of the convolutional kernel.
stride: Stride parameter for convolution operation.
padding: Padding parameter for convolution operation.
dilation: Dilation rate for convolution operation.
add_bias: Whether to add bias onto the convolutional result.
upsample: Whether to upsample the input tensor before convolution.
fused_scale: Whether to fused `upsample` and `conv2d` together, resulting
in `conv2_transpose`.
wscale_gain: The gain factor for `wscale` layer.
wscale_lr_multiplier: The learning rate multiplier factor for `wscale`
layer.
activation_type: Type of activation function. Support `linear`, `lrelu`
and `tanh`.
Raises:
NotImplementedError: If the input `activation_type` is not supported.
"""
super().__init__()
self.pixel_norm = PixelNormLayer()
if upsample and not fused_scale:
self.upsample = ResolutionScalingLayer()
else:
self.upsample = nn.Identity()
if upsample and fused_scale:
self.weight = nn.Parameter(
torch.randn(kernel_size, kernel_size, in_channels, out_channels))
fan_in = in_channels * kernel_size * kernel_size
self.scale = wscale_gain / np.sqrt(fan_in)
else:
self.conv = nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=1,
bias=add_bias)
self.wscale = WScaleLayer(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
gain=wscale_gain)
if activation_type == 'linear':
self.activate = nn.Identity()
elif activation_type == 'lrelu':
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
elif activation_type == 'tanh':
self.activate = nn.Hardtanh()
else:
raise NotImplementedError(f'Not implemented activation function: '
f'{activation_type}!')
def forward(self, x):
x = self.pixel_norm(x)
x = self.upsample(x)
if hasattr(self, 'conv'):
x = self.conv(x)
else:
kernel = self.weight * self.scale
kernel = F.pad(kernel, (0, 0, 0, 0, 1, 1, 1, 1), 'constant', 0.0)
kernel = (kernel[1:, 1:] + kernel[:-1, 1:] +
kernel[1:, :-1] + kernel[:-1, :-1])
kernel = kernel.permute(2, 3, 0, 1)
x = F.conv_transpose2d(x, kernel, stride=2, padding=1)
x = x / self.scale
x = self.wscale(x)
x = self.activate(x)
return x
|