File size: 12,851 Bytes
4d6b877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# python3.7
"""Contains the implementation of generator described in ProgressiveGAN.

Different from the official tensorflow model in folder `pggan_tf_official`, this
is a simple pytorch version which only contains the generator part. This class
is specially used for inference.

For more details, please check the original paper:
https://arxiv.org/pdf/1710.10196.pdf
"""

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['PGGANGeneratorModel']

# Defines a dictionary, which maps the target resolution of the final generated
# image to numbers of filters used in each convolutional layer in sequence.
_RESOLUTIONS_TO_CHANNELS = {
    8: [512, 512, 512],
    16: [512, 512, 512, 512],
    32: [512, 512, 512, 512, 512],
    64: [512, 512, 512, 512, 512, 256],
    128: [512, 512, 512, 512, 512, 256, 128],
    256: [512, 512, 512, 512, 512, 256, 128, 64],
    512: [512, 512, 512, 512, 512, 256, 128, 64, 32],
    1024: [512, 512, 512, 512, 512, 256, 128, 64, 32, 16],
}

# Variable mapping from pytorch model to official tensorflow model.
_PGGAN_PTH_VARS_TO_TF_VARS = {
    'lod': 'lod',  # []
    'layer0.conv.weight': '4x4/Dense/weight',  # [512, 512, 4, 4]
    'layer0.wscale.bias': '4x4/Dense/bias',  # [512]
    'layer1.conv.weight': '4x4/Conv/weight',  # [512, 512, 3, 3]
    'layer1.wscale.bias': '4x4/Conv/bias',  # [512]
    'layer2.conv.weight': '8x8/Conv0/weight',  # [512, 512, 3, 3]
    'layer2.wscale.bias': '8x8/Conv0/bias',  # [512]
    'layer3.conv.weight': '8x8/Conv1/weight',  # [512, 512, 3, 3]
    'layer3.wscale.bias': '8x8/Conv1/bias',  # [512]
    'layer4.conv.weight': '16x16/Conv0/weight',  # [512, 512, 3, 3]
    'layer4.wscale.bias': '16x16/Conv0/bias',  # [512]
    'layer5.conv.weight': '16x16/Conv1/weight',  # [512, 512, 3, 3]
    'layer5.wscale.bias': '16x16/Conv1/bias',  # [512]
    'layer6.conv.weight': '32x32/Conv0/weight',  # [512, 512, 3, 3]
    'layer6.wscale.bias': '32x32/Conv0/bias',  # [512]
    'layer7.conv.weight': '32x32/Conv1/weight',  # [512, 512, 3, 3]
    'layer7.wscale.bias': '32x32/Conv1/bias',  # [512]
    'layer8.conv.weight': '64x64/Conv0/weight',  # [256, 512, 3, 3]
    'layer8.wscale.bias': '64x64/Conv0/bias',  # [256]
    'layer9.conv.weight': '64x64/Conv1/weight',  # [256, 256, 3, 3]
    'layer9.wscale.bias': '64x64/Conv1/bias',  # [256]
    'layer10.conv.weight': '128x128/Conv0/weight',  # [128, 256, 3, 3]
    'layer10.wscale.bias': '128x128/Conv0/bias',  # [128]
    'layer11.conv.weight': '128x128/Conv1/weight',  # [128, 128, 3, 3]
    'layer11.wscale.bias': '128x128/Conv1/bias',  # [128]
    'layer12.conv.weight': '256x256/Conv0/weight',  # [64, 128, 3, 3]
    'layer12.wscale.bias': '256x256/Conv0/bias',  # [64]
    'layer13.conv.weight': '256x256/Conv1/weight',  # [64, 64, 3, 3]
    'layer13.wscale.bias': '256x256/Conv1/bias',  # [64]
    'layer14.conv.weight': '512x512/Conv0/weight',  # [32, 64, 3, 3]
    'layer14.wscale.bias': '512x512/Conv0/bias',  # [32]
    'layer15.conv.weight': '512x512/Conv1/weight',  # [32, 32, 3, 3]
    'layer15.wscale.bias': '512x512/Conv1/bias',  # [32]
    'layer16.conv.weight': '1024x1024/Conv0/weight',  # [16, 32, 3, 3]
    'layer16.wscale.bias': '1024x1024/Conv0/bias',  # [16]
    'layer17.conv.weight': '1024x1024/Conv1/weight',  # [16, 16, 3, 3]
    'layer17.wscale.bias': '1024x1024/Conv1/bias',  # [16]
    'output0.conv.weight': 'ToRGB_lod8/weight',  # [3, 512, 1, 1]
    'output0.wscale.bias': 'ToRGB_lod8/bias',  # [3]
    'output1.conv.weight': 'ToRGB_lod7/weight',  # [3, 512, 1, 1]
    'output1.wscale.bias': 'ToRGB_lod7/bias',  # [3]
    'output2.conv.weight': 'ToRGB_lod6/weight',  # [3, 512, 1, 1]
    'output2.wscale.bias': 'ToRGB_lod6/bias',  # [3]
    'output3.conv.weight': 'ToRGB_lod5/weight',  # [3, 512, 1, 1]
    'output3.wscale.bias': 'ToRGB_lod5/bias',  # [3]
    'output4.conv.weight': 'ToRGB_lod4/weight',  # [3, 256, 1, 1]
    'output4.wscale.bias': 'ToRGB_lod4/bias',  # [3]
    'output5.conv.weight': 'ToRGB_lod3/weight',  # [3, 128, 1, 1]
    'output5.wscale.bias': 'ToRGB_lod3/bias',  # [3]
    'output6.conv.weight': 'ToRGB_lod2/weight',  # [3, 64, 1, 1]
    'output6.wscale.bias': 'ToRGB_lod2/bias',  # [3]
    'output7.conv.weight': 'ToRGB_lod1/weight',  # [3, 32, 1, 1]
    'output7.wscale.bias': 'ToRGB_lod1/bias',  # [3]
    'output8.conv.weight': 'ToRGB_lod0/weight',  # [3, 16, 1, 1]
    'output8.wscale.bias': 'ToRGB_lod0/bias',  # [3]
}


class PGGANGeneratorModel(nn.Module):
  """Defines the generator module in ProgressiveGAN.

  Note that the generated images are with RGB color channels with range [-1, 1].
  """

  def __init__(self,
               resolution=1024,
               fused_scale=False,
               output_channels=3):
    """Initializes the generator with basic settings.

    Args:
      resolution: The resolution of the final output image. (default: 1024)
      fused_scale: Whether to fused `upsample` and `conv2d` together, resulting
        in `conv2_transpose`. (default: False)
      output_channels: Number of channels of the output image. (default: 3)

    Raises:
      ValueError: If the input `resolution` is not supported.
    """
    super().__init__()

    try:
      self.channels = _RESOLUTIONS_TO_CHANNELS[resolution]
    except KeyError:
      raise ValueError(f'Invalid resolution: {resolution}!\n'
                       f'Resolutions allowed: '
                       f'{list(_RESOLUTIONS_TO_CHANNELS)}.')
    assert len(self.channels) == int(np.log2(resolution))

    self.resolution = resolution
    self.fused_scale = fused_scale
    self.output_channels = output_channels

    for block_idx in range(1, len(self.channels)):
      if block_idx == 1:
        self.add_module(
            f'layer{2 * block_idx - 2}',
            ConvBlock(in_channels=self.channels[block_idx - 1],
                      out_channels=self.channels[block_idx],
                      kernel_size=4,
                      padding=3))
      else:
        self.add_module(
            f'layer{2 * block_idx - 2}',
            ConvBlock(in_channels=self.channels[block_idx - 1],
                      out_channels=self.channels[block_idx],
                      upsample=True,
                      fused_scale=self.fused_scale))
      self.add_module(
          f'layer{2 * block_idx - 1}',
          ConvBlock(in_channels=self.channels[block_idx],
                    out_channels=self.channels[block_idx]))
      self.add_module(
          f'output{block_idx - 1}',
          ConvBlock(in_channels=self.channels[block_idx],
                    out_channels=self.output_channels,
                    kernel_size=1,
                    padding=0,
                    wscale_gain=1.0,
                    activation_type='linear'))

    self.upsample = ResolutionScalingLayer()
    self.lod = nn.Parameter(torch.zeros(()))

    self.pth_to_tf_var_mapping = {}
    for pth_var_name, tf_var_name in _PGGAN_PTH_VARS_TO_TF_VARS.items():
      if self.fused_scale and 'Conv0' in tf_var_name:
        pth_var_name = pth_var_name.replace('conv.weight', 'weight')
        tf_var_name = tf_var_name.replace('Conv0', 'Conv0_up')
      self.pth_to_tf_var_mapping[pth_var_name] = tf_var_name

  def forward(self, x):
    if len(x.shape) != 2:
      raise ValueError(f'The input tensor should be with shape [batch_size, '
                       f'noise_dim], but {x.shape} received!')
    x = x.view(x.shape[0], x.shape[1], 1, 1)

    lod = self.lod.cpu().tolist()
    for block_idx in range(1, len(self.channels)):
      if block_idx + lod < len(self.channels):
        x = self.__getattr__(f'layer{2 * block_idx - 2}')(x)
        x = self.__getattr__(f'layer{2 * block_idx - 1}')(x)
        image = self.__getattr__(f'output{block_idx - 1}')(x)
      else:
        image = self.upsample(image)
    return image


class PixelNormLayer(nn.Module):
  """Implements pixel-wise feature vector normalization layer."""

  def __init__(self, epsilon=1e-8):
    super().__init__()
    self.epsilon = epsilon

  def forward(self, x):
    return x / torch.sqrt(torch.mean(x**2, dim=1, keepdim=True) + self.epsilon)


class ResolutionScalingLayer(nn.Module):
  """Implements the resolution scaling layer.

  Basically, this layer can be used to upsample or downsample feature maps from
  spatial domain with nearest neighbor interpolation.
  """

  def __init__(self, scale_factor=2):
    super().__init__()
    self.scale_factor = scale_factor

  def forward(self, x):
    return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')


class WScaleLayer(nn.Module):
  """Implements the layer to scale weight variable and add bias.

  Note that, the weight variable is trained in `nn.Conv2d` layer, and only
  scaled with a constant number, which is not trainable, in this layer. However,
  the bias variable is trainable in this layer.
  """

  def __init__(self, in_channels, out_channels, kernel_size, gain=np.sqrt(2.0)):
    super().__init__()
    fan_in = in_channels * kernel_size * kernel_size
    self.scale = gain / np.sqrt(fan_in)
    self.bias = nn.Parameter(torch.zeros(out_channels))

  def forward(self, x):
    return x * self.scale + self.bias.view(1, -1, 1, 1)


class ConvBlock(nn.Module):
  """Implements the convolutional block used in ProgressiveGAN.

  Basically, this block executes pixel-wise normalization layer, upsampling
  layer (if needed), convolutional layer, weight-scale layer, and activation
  layer in sequence.
  """

  def __init__(self,
               in_channels,
               out_channels,
               kernel_size=3,
               stride=1,
               padding=1,
               dilation=1,
               add_bias=False,
               upsample=False,
               fused_scale=False,
               wscale_gain=np.sqrt(2.0),
               activation_type='lrelu'):
    """Initializes the class with block settings.

    Args:
      in_channels: Number of channels of the input tensor fed into this block.
      out_channels: Number of channels (kernels) of the output tensor.
      kernel_size: Size of the convolutional kernel.
      stride: Stride parameter for convolution operation.
      padding: Padding parameter for convolution operation.
      dilation: Dilation rate for convolution operation.
      add_bias: Whether to add bias onto the convolutional result.
      upsample: Whether to upsample the input tensor before convolution.
      fused_scale: Whether to fused `upsample` and `conv2d` together, resulting
        in `conv2_transpose`.
      wscale_gain: The gain factor for `wscale` layer.
      wscale_lr_multiplier: The learning rate multiplier factor for `wscale`
        layer.
      activation_type: Type of activation function. Support `linear`, `lrelu`
        and `tanh`.

    Raises:
      NotImplementedError: If the input `activation_type` is not supported.
    """
    super().__init__()
    self.pixel_norm = PixelNormLayer()

    if upsample and not fused_scale:
      self.upsample = ResolutionScalingLayer()
    else:
      self.upsample = nn.Identity()

    if upsample and fused_scale:
      self.weight = nn.Parameter(
          torch.randn(kernel_size, kernel_size, in_channels, out_channels))
      fan_in = in_channels * kernel_size * kernel_size
      self.scale = wscale_gain / np.sqrt(fan_in)
    else:
      self.conv = nn.Conv2d(in_channels=in_channels,
                            out_channels=out_channels,
                            kernel_size=kernel_size,
                            stride=stride,
                            padding=padding,
                            dilation=dilation,
                            groups=1,
                            bias=add_bias)

    self.wscale = WScaleLayer(in_channels=in_channels,
                              out_channels=out_channels,
                              kernel_size=kernel_size,
                              gain=wscale_gain)

    if activation_type == 'linear':
      self.activate = nn.Identity()
    elif activation_type == 'lrelu':
      self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
    elif activation_type == 'tanh':
      self.activate = nn.Hardtanh()
    else:
      raise NotImplementedError(f'Not implemented activation function: '
                                f'{activation_type}!')

  def forward(self, x):
    x = self.pixel_norm(x)
    x = self.upsample(x)
    if hasattr(self, 'conv'):
      x = self.conv(x)
    else:
      kernel = self.weight * self.scale
      kernel = F.pad(kernel, (0, 0, 0, 0, 1, 1, 1, 1), 'constant', 0.0)
      kernel = (kernel[1:, 1:] + kernel[:-1, 1:] +
                kernel[1:, :-1] + kernel[:-1, :-1])
      kernel = kernel.permute(2, 3, 0, 1)
      x = F.conv_transpose2d(x, kernel, stride=2, padding=1)
      x = x / self.scale
    x = self.wscale(x)
    x = self.activate(x)
    return x