import torch from . import losses from ..utils.rewards import init_scorer, get_self_critical_reward class LossWrapper(torch.nn.Module): def __init__(self, model, opt): super(LossWrapper, self).__init__() self.opt = opt self.model = model if opt.label_smoothing > 0: self.crit = losses.LabelSmoothing(smoothing=opt.label_smoothing) else: self.crit = losses.LanguageModelCriterion() self.rl_crit = losses.RewardCriterion() self.struc_crit = losses.StructureLosses(opt) def forward(self, fc_feats, att_feats, labels, masks, att_masks, gts, gt_indices, sc_flag, struc_flag): opt = self.opt out = {} if struc_flag: if opt.structure_loss_weight < 1: lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) else: lm_loss = torch.tensor(0).type_as(fc_feats) if opt.structure_loss_weight > 0: gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\ or not 'margin' in opt.structure_loss_type, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] struc_loss = self.struc_crit(sample_logprobs, gen_result, gts) else: struc_loss = {'loss': torch.tensor(0).type_as(fc_feats), 'reward': torch.tensor(0).type_as(fc_feats)} loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss'] out['lm_loss'] = lm_loss out['struc_loss'] = struc_loss['loss'] out['reward'] = struc_loss['reward'] elif not sc_flag: loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]) else: self.model.eval() with torch.no_grad(): greedy_res, _ = self.model(fc_feats, att_feats, att_masks, mode='sample', opt={'sample_method': opt.sc_sample_method, 'beam_size': opt.sc_beam_size}) self.model.train() gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks, opt={'sample_method':opt.train_sample_method, 'beam_size':opt.train_beam_size, 'sample_n': opt.train_sample_n}, mode='sample') gts = [gts[_] for _ in gt_indices.tolist()] reward = get_self_critical_reward(greedy_res, gts, gen_result, self.opt) reward = torch.from_numpy(reward).to(sample_logprobs) loss = self.rl_crit(sample_logprobs, gen_result.data, reward) out['reward'] = reward[:,0].mean() out['loss'] = loss return out