import torch import gradio as gr from diffusers import StableDiffusionPipeline from diffusers import ControlNetModel, DDIMScheduler,EulerDiscreteScheduler,EulerAncestralDiscreteScheduler,UniPCMultistepScheduler from diffusers import KDPM2DiscreteScheduler,KDPM2AncestralDiscreteScheduler,PNDMScheduler,StableDiffusionPipeline import random def set_pipeline(model_id_repo,scheduler): model_ids_dict = { "runwayml": "runwayml/stable-diffusion-v1-5", "Realistic_Vision_V5_1_noVAE":"SG161222/Realistic_Vision_V5.1_noVAE" } model_id = model_id_repo model_repo = model_ids_dict.get(model_id) print("model_repo :",model_repo) pipe = StableDiffusionPipeline.from_pretrained( model_repo, # torch_dtype=torch.float16, # to run on cpu use_safetensors=True, ).to("cpu") scheduler_classes = { "DDIM": DDIMScheduler, "Euler": EulerDiscreteScheduler, "Euler a": EulerAncestralDiscreteScheduler, "UniPC": UniPCMultistepScheduler, "DPM2 Karras": KDPM2DiscreteScheduler, "DPM2 a Karras": KDPM2AncestralDiscreteScheduler, "PNDM": PNDMScheduler, } sampler_name = scheduler # Example sampler name, replace with the actual value scheduler_class = scheduler_classes.get(sampler_name) if scheduler_class is not None: print("sampler_name:",sampler_name) pipe.scheduler = scheduler_class.from_config(pipe.scheduler.config) else: pass return pipe def img_args( prompt, negative_prompt, model_id_repo = "Realistic_Vision_V5_1_noVAE", scheduler= "Euler a", height=896, width=896, num_inference_steps = 30, guidance_scale = 7.5, num_images_per_prompt = 1, seed = 0 ): pipe = set_pipeline(model_id_repo,scheduler) if seed == 0: seed = random.randint(0,25647981548564) print(f"random seed :{seed}") generator = torch.manual_seed(seed) else: generator = torch.manual_seed(seed) print(f"manual seed :{seed}") print("Prompt:",prompt) image = pipe(prompt=prompt, negative_prompt = negative_prompt, height = height, width = width, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, num_images_per_prompt = num_images_per_prompt, # default 1 generator = generator, ).images return image block = gr.Blocks().queue() block.title = "Inpaint Anything" with block as image_gen: with gr.Column(): with gr.Row(): gr.Markdown("## Image Generation") with gr.Row(): with gr.Column(): # with gr.Row(): prompt = gr.Textbox(placeholder="what you want to generate",label="Positive Prompt") negative_prompt = gr.Textbox(placeholder="what you don't want to generate",label="Negative prompt") run_btn = gr.Button("image generation", elem_id="select_btn", variant="primary") with gr.Accordion(label="Advance Options",open=False): model_selection = gr.Dropdown(choices=["runwayml","Realistic_Vision_V5_1_noVAE"],value="Realistic_Vision_V5_1_noVAE",label="Models") schduler_selection = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM"],value="Euler a",label="Scheduler") guidance_scale_slider = gr.Slider(label="guidance_scale", minimum=0, maximum=15, value=7.5, step=0.5) num_images_per_prompt_slider = gr.Slider(label="num_images_per_prompt", minimum=0, maximum=5, value=1, step=1) height_slider = gr.Slider(label="height", minimum=0, maximum=2048, value=896, step=1) width_slider = gr.Slider(label="width", minimum=0, maximum=2048, value=896, step=1) num_inference_steps_slider = gr.Slider(label="num_inference_steps", minimum=0, maximum=150, value=30, step=1) seed_slider = gr.Slider(label="Seed Slider", minimum=0, maximum=256479815, value=0, step=1) with gr.Column(): # out_img = gr.Image(type="pil",label="Output",height=480) out_img = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True) run_btn.click(fn=img_args,inputs=[prompt,negative_prompt,model_selection,schduler_selection,height_slider,width_slider,num_inference_steps_slider,guidance_scale_slider,num_images_per_prompt_slider,seed_slider],outputs=[out_img]) image_gen.launch()