from typing import Dict, List, Optional, Tuple, Union import librosa import numpy as np import torch from coqpit import Coqpit from torch import nn from torch.nn import Conv1d, Conv2d, ConvTranspose1d from torch.nn import functional as F from torch.nn.utils import spectral_norm from torch.nn.utils.parametrizations import weight_norm from torch.nn.utils.parametrize import remove_parametrizations import TTS.vc.modules.freevc.commons as commons import TTS.vc.modules.freevc.modules as modules from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.io import load_fsspec from TTS.vc.configs.freevc_config import FreeVCConfig from TTS.vc.models.base_vc import BaseVC from TTS.vc.modules.freevc.commons import get_padding, init_weights from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch from TTS.vc.modules.freevc.speaker_encoder.speaker_encoder import SpeakerEncoder as SpeakerEncoderEx from TTS.vc.modules.freevc.wavlm import get_wavlm class ResidualCouplingBlock(nn.Module): def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0): super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.flows = nn.ModuleList() for i in range(n_flows): self.flows.append( modules.ResidualCouplingLayer( channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True, ) ) self.flows.append(modules.Flip()) def forward(self, x, x_mask, g=None, reverse=False): if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x = flow(x, x_mask, g=g, reverse=reverse) return x class Encoder(nn.Module): def __init__( self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0 ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g=None): x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs, x_mask class Generator(torch.nn.Module): def __init__( self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0, ): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d)) self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) def forward(self, x, g=None): x = self.conv_pre(x) if g is not None: x = x + self.cond(g) for i in range(self.num_upsamples): x = F.leaky_relu(x, modules.LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: remove_parametrizations(l, "weight") for l in self.resblocks: remove_parametrizations(l, "weight") class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.use_spectral_norm = use_spectral_norm norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList( [ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), ] ) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList( [ norm_f(Conv1d(1, 16, 15, 1, padding=7)), norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ] ) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(MultiPeriodDiscriminator, self).__init__() periods = [2, 3, 5, 7, 11] discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] self.discriminators = nn.ModuleList(discs) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) y_d_gs.append(y_d_g) fmap_rs.append(fmap_r) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class SpeakerEncoder(torch.nn.Module): def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): super(SpeakerEncoder, self).__init__() self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) self.linear = nn.Linear(model_hidden_size, model_embedding_size) self.relu = nn.ReLU() def forward(self, mels): self.lstm.flatten_parameters() _, (hidden, _) = self.lstm(mels) embeds_raw = self.relu(self.linear(hidden[-1])) return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) def compute_partial_slices(self, total_frames, partial_frames, partial_hop): mel_slices = [] for i in range(0, total_frames - partial_frames, partial_hop): mel_range = torch.arange(i, i + partial_frames) mel_slices.append(mel_range) return mel_slices def embed_utterance(self, mel, partial_frames=128, partial_hop=64): mel_len = mel.size(1) last_mel = mel[:, -partial_frames:] if mel_len > partial_frames: mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) mels = list(mel[:, s] for s in mel_slices) mels.append(last_mel) mels = torch.stack(tuple(mels), 0).squeeze(1) with torch.no_grad(): partial_embeds = self(mels) embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) # embed = embed / torch.linalg.norm(embed, 2) else: with torch.no_grad(): embed = self(last_mel) return embed class FreeVC(BaseVC): """ Papaer:: https://arxiv.org/abs/2210.15418# Paper Abstract:: Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either extract dirty content information with speaker information leaked in, or demand a large amount of annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for high-quality waveform reconstruction, and propose strategies for clean content information extraction without text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, and propose the spectrogram-resize based data augmentation to improve the purity of extracted content information. Experimental results show that the proposed method outperforms the latest VC models trained with annotated data and has greater robustness. Original Code:: https://github.com/OlaWod/FreeVC Examples: >>> from TTS.vc.configs.freevc_config import FreeVCConfig >>> from TTS.vc.models.freevc import FreeVC >>> config = FreeVCConfig() >>> model = FreeVC(config) """ def __init__(self, config: Coqpit, speaker_manager: SpeakerManager = None): super().__init__(config, None, speaker_manager, None) self.init_multispeaker(config) self.spec_channels = self.args.spec_channels self.inter_channels = self.args.inter_channels self.hidden_channels = self.args.hidden_channels self.filter_channels = self.args.filter_channels self.n_heads = self.args.n_heads self.n_layers = self.args.n_layers self.kernel_size = self.args.kernel_size self.p_dropout = self.args.p_dropout self.resblock = self.args.resblock self.resblock_kernel_sizes = self.args.resblock_kernel_sizes self.resblock_dilation_sizes = self.args.resblock_dilation_sizes self.upsample_rates = self.args.upsample_rates self.upsample_initial_channel = self.args.upsample_initial_channel self.upsample_kernel_sizes = self.args.upsample_kernel_sizes self.segment_size = self.args.segment_size self.gin_channels = self.args.gin_channels self.ssl_dim = self.args.ssl_dim self.use_spk = self.args.use_spk self.enc_p = Encoder(self.args.ssl_dim, self.inter_channels, self.hidden_channels, 5, 1, 16) self.dec = Generator( self.inter_channels, self.resblock, self.resblock_kernel_sizes, self.resblock_dilation_sizes, self.upsample_rates, self.upsample_initial_channel, self.upsample_kernel_sizes, gin_channels=self.gin_channels, ) self.enc_q = Encoder( self.spec_channels, self.inter_channels, self.hidden_channels, 5, 1, 16, gin_channels=self.gin_channels ) self.flow = ResidualCouplingBlock( self.inter_channels, self.hidden_channels, 5, 1, 4, gin_channels=self.gin_channels ) if not self.use_spk: self.enc_spk = SpeakerEncoder(model_hidden_size=self.gin_channels, model_embedding_size=self.gin_channels) else: self.load_pretrained_speaker_encoder() self.wavlm = get_wavlm() @property def device(self): return next(self.parameters()).device def load_pretrained_speaker_encoder(self): """Load pretrained speaker encoder model as mentioned in the paper.""" print(" > Loading pretrained speaker encoder model ...") self.enc_spk_ex = SpeakerEncoderEx( "https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/speaker_encoder.pt" ) def init_multispeaker(self, config: Coqpit): """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer or with external `d_vectors` computed from a speaker encoder model. You must provide a `speaker_manager` at initialization to set up the multi-speaker modules. Args: config (Coqpit): Model configuration. data (List, optional): Dataset items to infer number of speakers. Defaults to None. """ self.num_spks = self.args.num_spks if self.speaker_manager: self.num_spks = self.speaker_manager.num_spks def forward( self, c: torch.Tensor, spec: torch.Tensor, g: Optional[torch.Tensor] = None, mel: Optional[torch.Tensor] = None, c_lengths: Optional[torch.Tensor] = None, spec_lengths: Optional[torch.Tensor] = None, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], ]: """ Forward pass of the model. Args: c: WavLM features. Shape: (batch_size, c_seq_len). spec: The input spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). g: The speaker embedding. Shape: (batch_size, spk_emb_dim). mel: The input mel-spectrogram for the speaker encoder. Shape: (batch_size, mel_seq_len, mel_dim). c_lengths: The lengths of the WavLM features. Shape: (batch_size,). spec_lengths: The lengths of the spectrogram. Shape: (batch_size,). Returns: o: The output spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). ids_slice: The slice indices. Shape: (batch_size, num_slices). spec_mask: The spectrogram mask. Shape: (batch_size, spec_seq_len). (z, z_p, m_p, logs_p, m_q, logs_q): A tuple of latent variables. """ # If c_lengths is None, set it to the length of the last dimension of c if c_lengths is None: c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) # If spec_lengths is None, set it to the length of the last dimension of spec if spec_lengths is None: spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device) # If use_spk is False, compute g from mel using enc_spk g = None if not self.use_spk: g = self.enc_spk(mel).unsqueeze(-1) # Compute m_p, logs_p, z, m_q, logs_q, and spec_mask using enc_p and enc_q _, m_p, logs_p, _ = self.enc_p(c, c_lengths) z, m_q, logs_q, spec_mask = self.enc_q(spec.transpose(1, 2), spec_lengths, g=g) # Compute z_p using flow z_p = self.flow(z, spec_mask, g=g) # Randomly slice z and compute o using dec z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size) o = self.dec(z_slice, g=g) return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q) @torch.no_grad() def inference(self, c, g=None, mel=None, c_lengths=None): """ Inference pass of the model Args: c (torch.Tensor): Input tensor. Shape: (batch_size, c_seq_len). g (torch.Tensor): Speaker embedding tensor. Shape: (batch_size, spk_emb_dim). mel (torch.Tensor): Mel-spectrogram tensor. Shape: (batch_size, mel_seq_len, mel_dim). c_lengths (torch.Tensor): Lengths of the input tensor. Shape: (batch_size,). Returns: torch.Tensor: Output tensor. """ if c_lengths == None: c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) if not self.use_spk: g = self.enc_spk.embed_utterance(mel) g = g.unsqueeze(-1) z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths) z = self.flow(z_p, c_mask, g=g, reverse=True) o = self.dec(z * c_mask, g=g) return o def extract_wavlm_features(self, y): """Extract WavLM features from an audio tensor. Args: y (torch.Tensor): Audio tensor. Shape: (batch_size, audio_seq_len). """ with torch.no_grad(): c = self.wavlm.extract_features(y)[0] c = c.transpose(1, 2) return c def load_audio(self, wav): """Read and format the input audio.""" if isinstance(wav, str): wav, _ = librosa.load(wav, sr=self.config.audio.input_sample_rate) if isinstance(wav, np.ndarray): wav = torch.from_numpy(wav).to(self.device) if isinstance(wav, torch.Tensor): wav = wav.to(self.device) if isinstance(wav, list): wav = torch.from_numpy(np.array(wav)).to(self.device) return wav.float() @torch.inference_mode() def voice_conversion(self, src, tgt): """ Voice conversion pass of the model. Args: src (str or torch.Tensor): Source utterance. tgt (str or torch.Tensor): Target utterance. Returns: torch.Tensor: Output tensor. """ wav_tgt = self.load_audio(tgt).cpu().numpy() wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) if self.config.model_args.use_spk: g_tgt = self.enc_spk_ex.embed_utterance(wav_tgt) g_tgt = torch.from_numpy(g_tgt)[None, :, None].to(self.device) else: wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(self.device) mel_tgt = mel_spectrogram_torch( wav_tgt, self.config.audio.filter_length, self.config.audio.n_mel_channels, self.config.audio.input_sample_rate, self.config.audio.hop_length, self.config.audio.win_length, self.config.audio.mel_fmin, self.config.audio.mel_fmax, ) # src wav_src = self.load_audio(src) c = self.extract_wavlm_features(wav_src[None, :]) if self.config.model_args.use_spk: audio = self.inference(c, g=g_tgt) else: audio = self.inference(c, mel=mel_tgt.transpose(1, 2)) audio = audio[0][0].data.cpu().float().numpy() return audio def eval_step(): ... @staticmethod def init_from_config(config: FreeVCConfig, samples: Union[List[List], List[Dict]] = None, verbose=True): model = FreeVC(config) return model def load_checkpoint(self, config, checkpoint_path, eval=False, strict=True, cache=False): state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) self.load_state_dict(state["model"], strict=strict) if eval: self.eval() def train_step(): ...