import torch import spaces import gradio as gr import os import numpy as np import trimesh import mcubes import imageio from torchvision.utils import save_image from PIL import Image from transformers import AutoModel, AutoConfig from rembg import remove, new_session from functools import partial from kiui.op import recenter import kiui from gradio_litmodel3d import LitModel3D import shutil def find_cuda(): # 检查 CUDA_HOME 或 CUDA_PATH 环境变量是否已设置 cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') if cuda_home and os.path.exists(cuda_home): return cuda_home # 在系统 PATH 中搜索 nvcc 可执行文件 nvcc_path = shutil.which('nvcc') if nvcc_path: # 删除“bin/nvcc”部分,获取 CUDA 安装路径 cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) return cuda_path return None cuda_path = find_cuda() if cuda_path: print(f"CUDA 已安装在:{cuda_path}") else: print("未找到已安装的 CUDA 路径") # 从 HF 加载预训练模型 class LRMGeneratorWrapper: def __init__(self): self.config = AutoConfig.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN')) self.model = AutoModel.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN')) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(self.device) self.model.eval() def forward(self, image, camera): return self.model(image, camera) model_wrapper = LRMGeneratorWrapper() # 处理输入图像 def preprocess_image(image, source_size): session = new_session("isnet-general-use") rembg_remove = partial(remove, session=session) image = np.array(image) image = rembg_remove(image) mask = rembg_remove(image, only_mask=True) image = recenter(image, mask, border_ratio=0.20) image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0 if image.shape[1] == 4: image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...]) image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True) image = torch.clamp(image, 0, 1) return image def get_normalized_camera_intrinsics(intrinsics: torch.Tensor): fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1] cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1] width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1] fx, fy = fx / width, fy / height cx, cy = cx / width, cy / height return fx, fy, cx, cy def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor): fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) return torch.cat([ RT.reshape(-1, 12), fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1), ], dim=-1) def _default_intrinsics(): fx = fy = 384 cx = cy = 256 w = h = 512 intrinsics = torch.tensor([ [fx, fy], [cx, cy], [w, h], ], dtype=torch.float32) return intrinsics def _default_source_camera(batch_size: int = 1): canonical_camera_extrinsics = torch.tensor([[ [0, 0, 1, 1], [1, 0, 0, 0], [0, 1, 0, 0], ]], dtype=torch.float32) canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0) source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics) return source_camera.repeat(batch_size, 1) def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): """ camera_position: (M, 3) look_at: (3) up_world: (3) return: (M, 3, 4) """ # 默认情况下,从原点向上为 pos-z if look_at is None: look_at = torch.tensor([0, 0, 0], dtype=torch.float32) if up_world is None: up_world = torch.tensor([0, 0, 1], dtype=torch.float32) look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) z_axis = camera_position - look_at z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True) x_axis = torch.cross(up_world, z_axis) x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True) y_axis = torch.cross(z_axis, x_axis) y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True) extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) return extrinsics def compose_extrinsic_RT(RT: torch.Tensor): """ 从 RT 生成标准形式的外差矩阵。 分批输入/输出。 """ return torch.cat([ RT, torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device) ], dim=1) def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor): """ RT: (N, 3, 4) intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]] """ E = compose_extrinsic_RT(RT) fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics) I = torch.stack([ torch.stack([fx, torch.zeros_like(fx), cx], dim=-1), torch.stack([torch.zeros_like(fy), fy, cy], dim=-1), torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1), ], dim=1) return torch.cat([ E.reshape(-1, 16), I.reshape(-1, 9), ], dim=-1) def _default_render_cameras(batch_size: int = 1): M = 80 radius = 1.5 elevation = 0 camera_positions = [] rand_theta = np.random.uniform(0, np.pi/180) elevation = np.radians(elevation) for i in range(M): theta = 2 * np.pi * i / M + rand_theta x = radius * np.cos(theta) * np.cos(elevation) y = radius * np.sin(theta) * np.cos(elevation) z = radius * np.sin(elevation) camera_positions.append([x, y, z]) camera_positions = torch.tensor(camera_positions, dtype=torch.float32) extrinsics = _center_looking_at_camera_pose(camera_positions) render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1) render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics) return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1) @spaces.GPU def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=False, fps=30): image = preprocess_image(image, source_size).to(model_wrapper.device) source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device) with torch.no_grad(): planes = model_wrapper.forward(image, source_camera) if export_mesh: grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size) vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0) vtx = vtx / (mesh_size - 1) * 2 - 1 vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0) vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() vtx_colors = (vtx_colors * 255).astype(np.uint8) mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) mesh_path = "xiaoxis_mesh.obj" mesh.export(mesh_path, 'obj') return None, mesh_path if export_video: render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device) frames = [] chunk_size = 1 for i in range(0, render_cameras.shape[1], chunk_size): frame_chunk = model_wrapper.model.synthesizer( planes, render_cameras[:, i:i + chunk_size], render_size, render_size, 0, 0 ) frames.append(frame_chunk['images_rgb']) frames = torch.cat(frames, dim=1) frames = frames.squeeze(0) frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8) video_path = "xiaoxis_video.mp4" imageio.mimwrite(video_path, frames, fps=fps) return None, video_path return planes, None return None, None def step_1_generate_planes(image): planes, _ = generate_mesh(image) return planes def step_2_generate_obj(image): _, mesh_path = generate_mesh(image, export_mesh=True) return mesh_path, mesh_path def step_3_generate_video(image): _, video_path = generate_mesh(image, export_video=True) return video_path, video_path # 从 assets 文件夹中设置示例文件,并限制最多读取 10 个文件 example_folder = "assets" examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))][:10] with gr.Blocks() as demo: with gr.Row(): gr.Markdown(""" # 图像升维计算模型:EMU Video 的衍生尝试 我们利用视频扩散模型作为多视图数据生成器,从而促进可扩展 3D 生成模型的学习。以下展示了视频扩散模型作为多视图数据引擎的潜力,能够生成无限规模的合成数据以支持可扩展的训练。我们提出的模型从合成数据中学习,在生成 3D 资产方面表现出卓越的性能。 除了当前状态之外,我们的模型还具有高度可扩展性,并且可以根据合成数据和 3D 数据的数量进行扩展,为 3D 生成模型铺平了新的道路。 """) with gr.Row(): with gr.Column(): img_input = gr.Image(type="pil", label="输入图像") examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=5) generate_mesh_button = gr.Button("生成模型") generate_video_button = gr.Button("生成视频") with gr.Column(): model_output = LitModel3D( clear_color=[0, 0, 0, 0], # 可调整背景颜色,以获得更好的对比度 label="模型可视化", scale=1.0, tonemapping="aces", # 可使用 aces 色调映射,使灯光更逼真 exposure=1.1, # 可调节曝光以控制亮度 contrast=1.1, # 可略微增加对比度,以获得更好的深度 camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中 zoom_speed=0.5, # 将调整变焦速度,以便更好地控制 pan_speed=0.5, # 将调整摇摄速度,以便更好地控制 interactive=False # 这样用户就可以与模型进行交互 ) with gr.Row(): with gr.Column(): obj_file_output = gr.File(label="下载 .obj 文件") video_file_output = gr.File(label="下载视频") with gr.Column(): video_output = gr.Video(label="360° 视频") # 清除输出 def clear_model_viewer(): """在加载新模型前重置 Gradio。""" update_output = gr.update(value=None) return update_output, update_output # 首先清除输出的数据 img_input.change(clear_model_viewer, inputs=None, outputs=[model_output, video_output]) # 然后生成模型和视频 generate_mesh_button.click(step_2_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output]) generate_video_button.click(step_3_generate_video, inputs=img_input, outputs=[video_file_output, video_output]) demo.launch( auth=(os.environ.get('AUTH_USERNAME'), os.environ.get('AUTH_PASSWORD')) )