Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -970,223 +970,220 @@ def handsome_chat_completions():
|
|
| 970 |
}
|
| 971 |
|
| 972 |
if model_name in image_models:
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
-
|
| 989 |
-
|
| 990 |
-
|
| 991 |
-
|
| 992 |
"model": model_name,
|
| 993 |
"prompt": user_content,
|
| 994 |
-
|
| 995 |
}
|
| 996 |
-
|
| 997 |
-
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
|
| 1003 |
-
|
| 1004 |
-
|
| 1005 |
-
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
siliconflow_data["seed"] = seed
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
| 1015 |
siliconflow_data["steps"] = 20
|
| 1016 |
-
|
| 1017 |
siliconflow_data["guidance"] = 3
|
| 1018 |
-
|
| 1019 |
-
|
| 1020 |
-
|
| 1021 |
siliconflow_data["interval"] = 2
|
| 1022 |
-
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
| 1033 |
-
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
|
| 1038 |
-
|
| 1039 |
-
|
| 1040 |
-
|
| 1041 |
-
|
| 1042 |
-
|
| 1043 |
-
|
| 1044 |
-
if siliconflow_data["batch_size"] < 1:
|
| 1045 |
siliconflow_data["batch_size"] = 1
|
| 1046 |
-
|
| 1047 |
siliconflow_data["batch_size"] = 4
|
| 1048 |
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
-
|
| 1052 |
siliconflow_data["num_inference_steps"] = 50
|
| 1053 |
-
|
| 1054 |
-
|
| 1055 |
siliconflow_data["guidance_scale"] = 0
|
| 1056 |
-
|
| 1057 |
siliconflow_data["guidance_scale"] = 100
|
| 1058 |
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
|
|
|
|
| 1062 |
start_time = time.time()
|
| 1063 |
response = requests.post(
|
| 1064 |
-
|
| 1065 |
-
|
| 1066 |
-
|
| 1067 |
-
|
| 1068 |
-
|
| 1069 |
)
|
| 1070 |
-
|
| 1071 |
if response.status_code == 429:
|
| 1072 |
-
|
| 1073 |
|
| 1074 |
if data.get("stream", False):
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
-
|
| 1079 |
-
|
| 1080 |
-
|
| 1081 |
-
|
| 1082 |
-
|
| 1083 |
|
| 1084 |
-
|
| 1085 |
-
|
| 1086 |
-
|
| 1087 |
-
|
| 1088 |
-
|
| 1089 |
-
|
| 1090 |
-
|
| 1091 |
-
|
| 1092 |
-
|
| 1093 |
-
|
| 1094 |
-
markdown_image_link = f""
|
| 1095 |
-
if image_url:
|
| 1096 |
-
chunk_data = {
|
| 1097 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1098 |
-
"object": "chat.completion.chunk",
|
| 1099 |
-
"created": int(time.time()),
|
| 1100 |
-
"model": model_name,
|
| 1101 |
-
"choices": [
|
| 1102 |
-
{
|
| 1103 |
-
"index": 0,
|
| 1104 |
-
"delta": {
|
| 1105 |
-
"role": "assistant",
|
| 1106 |
-
"content": markdown_image_link
|
| 1107 |
-
},
|
| 1108 |
-
"finish_reason": None
|
| 1109 |
-
}
|
| 1110 |
-
]
|
| 1111 |
-
}
|
| 1112 |
-
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
| 1113 |
-
full_response_content = markdown_image_link
|
| 1114 |
-
else:
|
| 1115 |
-
chunk_data = {
|
| 1116 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1117 |
-
"object": "chat.completion.chunk",
|
| 1118 |
-
"created": int(time.time()),
|
| 1119 |
-
"model": model_name,
|
| 1120 |
-
"choices": [
|
| 1121 |
-
{
|
| 1122 |
-
"index": 0,
|
| 1123 |
-
"delta": {
|
| 1124 |
-
"role": "assistant",
|
| 1125 |
-
"content": "Failed to generate image"
|
| 1126 |
-
},
|
| 1127 |
-
"finish_reason": None
|
| 1128 |
-
}
|
| 1129 |
-
]
|
| 1130 |
-
}
|
| 1131 |
-
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
| 1132 |
-
full_response_content = "Failed to generate image"
|
| 1133 |
|
| 1134 |
-
|
| 1135 |
-
|
| 1136 |
-
|
| 1137 |
-
|
| 1138 |
-
|
| 1139 |
-
|
| 1140 |
-
|
| 1141 |
-
|
| 1142 |
-
|
| 1143 |
-
|
| 1144 |
-
|
| 1145 |
-
|
| 1146 |
-
|
| 1147 |
-
|
| 1148 |
-
|
| 1149 |
-
|
| 1150 |
-
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
|
| 1161 |
-
|
| 1162 |
-
|
| 1163 |
-
|
| 1164 |
-
|
| 1165 |
-
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
-
|
| 1171 |
-
|
| 1172 |
-
|
| 1173 |
-
|
| 1174 |
-
|
| 1175 |
-
|
| 1176 |
-
|
| 1177 |
-
|
| 1178 |
-
|
| 1179 |
-
|
| 1180 |
-
|
| 1181 |
-
|
| 1182 |
-
|
| 1183 |
-
|
| 1184 |
-
|
| 1185 |
-
|
| 1186 |
-
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1190 |
|
| 1191 |
else:
|
| 1192 |
response.raise_for_status()
|
|
@@ -1245,22 +1242,22 @@ def handsome_chat_completions():
|
|
| 1245 |
}
|
| 1246 |
|
| 1247 |
logging.info(
|
| 1248 |
-
|
| 1249 |
-
|
| 1250 |
-
|
| 1251 |
)
|
| 1252 |
with data_lock:
|
| 1253 |
-
|
| 1254 |
-
|
| 1255 |
return jsonify(response_data)
|
| 1256 |
|
| 1257 |
-
|
| 1258 |
logging.error(f"请求转发异常: {e}")
|
| 1259 |
return jsonify({"error": str(e)}), 500
|
| 1260 |
else:
|
| 1261 |
tools = data.get("tools")
|
| 1262 |
tool_choice = data.get("tool_choice")
|
| 1263 |
-
|
| 1264 |
siliconflow_data = {
|
| 1265 |
"model": model_name,
|
| 1266 |
"messages": data.get("messages", []),
|
|
@@ -1312,15 +1309,16 @@ def handsome_chat_completions():
|
|
| 1312 |
prompt_tokens = 0
|
| 1313 |
completion_tokens = 0
|
| 1314 |
response_content = ""
|
|
|
|
| 1315 |
tool_calls = []
|
|
|
|
| 1316 |
for line in full_response_content.splitlines():
|
| 1317 |
if line.startswith("data:"):
|
| 1318 |
-
|
| 1319 |
-
|
| 1320 |
continue
|
| 1321 |
-
|
| 1322 |
response_json = json.loads(line)
|
| 1323 |
-
|
| 1324 |
if (
|
| 1325 |
"usage" in response_json and
|
| 1326 |
"completion_tokens" in response_json["usage"]
|
|
@@ -1347,7 +1345,6 @@ def handsome_chat_completions():
|
|
| 1347 |
if "tool_calls" in message:
|
| 1348 |
tool_calls.extend(message["tool_calls"])
|
| 1349 |
|
| 1350 |
-
|
| 1351 |
if (
|
| 1352 |
"usage" in response_json and
|
| 1353 |
"prompt_tokens" in response_json["usage"]
|
|
@@ -1356,23 +1353,24 @@ def handsome_chat_completions():
|
|
| 1356 |
"usage"
|
| 1357 |
]["prompt_tokens"]
|
| 1358 |
|
| 1359 |
-
|
|
|
|
| 1360 |
KeyError,
|
| 1361 |
ValueError,
|
| 1362 |
IndexError
|
| 1363 |
-
|
| 1364 |
-
|
| 1365 |
f"解析流式响应单行 JSON 失败: {e}, "
|
| 1366 |
f"行内容: {line}"
|
| 1367 |
-
|
| 1368 |
|
| 1369 |
user_content = ""
|
| 1370 |
messages = data.get("messages", [])
|
| 1371 |
for message in messages:
|
| 1372 |
-
|
| 1373 |
-
|
| 1374 |
user_content += message["content"] + " "
|
| 1375 |
-
|
| 1376 |
for item in message["content"]:
|
| 1377 |
if (
|
| 1378 |
isinstance(item, dict) and
|
|
@@ -1390,7 +1388,7 @@ def handsome_chat_completions():
|
|
| 1390 |
response_content_replaced = response_content.replace(
|
| 1391 |
'\n', '\\n'
|
| 1392 |
).replace('\r', '\\n')
|
| 1393 |
-
|
| 1394 |
log_message = (
|
| 1395 |
f"使用的key: {api_key}, "
|
| 1396 |
f"提示token: {prompt_tokens}, "
|
|
@@ -1401,17 +1399,16 @@ def handsome_chat_completions():
|
|
| 1401 |
f"用户的内容: {user_content_replaced}, "
|
| 1402 |
f"输出的内容: {response_content_replaced}"
|
| 1403 |
)
|
|
|
|
| 1404 |
if tool_calls:
|
| 1405 |
-
|
| 1406 |
-
|
| 1407 |
logging.info(log_message)
|
| 1408 |
|
| 1409 |
with data_lock:
|
| 1410 |
request_timestamps.append(time.time())
|
| 1411 |
token_counts.append(prompt_tokens+completion_tokens)
|
| 1412 |
-
|
| 1413 |
-
|
| 1414 |
-
|
| 1415 |
# 构造 OpenAI 格式的响应数据
|
| 1416 |
response_data = {
|
| 1417 |
"id": f"chatcmpl-{uuid.uuid4()}",
|
|
@@ -1428,13 +1425,31 @@ def handsome_chat_completions():
|
|
| 1428 |
}
|
| 1429 |
]
|
| 1430 |
}
|
| 1431 |
-
|
| 1432 |
-
if response_content:
|
| 1433 |
-
response_data["choices"][0]["delta"]["content"] = response_content
|
| 1434 |
|
| 1435 |
if tool_calls:
|
| 1436 |
-
|
| 1437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1438 |
yield f"data: {json.dumps(response_data)}\n\n".encode('utf-8')
|
| 1439 |
|
| 1440 |
end_chunk_data = {
|
|
@@ -1469,11 +1484,10 @@ def handsome_chat_completions():
|
|
| 1469 |
response_content = response_json[
|
| 1470 |
"choices"
|
| 1471 |
][0]["message"]["content"]
|
| 1472 |
-
|
| 1473 |
if "tool_calls" in response_json["choices"][0]["message"]:
|
| 1474 |
tool_calls = response_json["choices"][0]["message"]["tool_calls"]
|
| 1475 |
else:
|
| 1476 |
-
|
| 1477 |
except (KeyError, ValueError, IndexError) as e:
|
| 1478 |
logging.error(
|
| 1479 |
f"解析非流式响应 JSON 失败: {e}, "
|
|
@@ -1497,7 +1511,8 @@ def handsome_chat_completions():
|
|
| 1497 |
item.get("type") == "text"
|
| 1498 |
):
|
| 1499 |
user_content += (
|
| 1500 |
-
item.get("text", "") +
|
|
|
|
| 1501 |
)
|
| 1502 |
|
| 1503 |
user_content = user_content.strip()
|
|
@@ -1508,9 +1523,9 @@ def handsome_chat_completions():
|
|
| 1508 |
response_content_replaced = response_content.replace(
|
| 1509 |
'\n', '\\n'
|
| 1510 |
).replace('\r', '\\n')
|
| 1511 |
-
|
| 1512 |
log_message = (
|
| 1513 |
-
|
| 1514 |
f"提示token: {prompt_tokens}, "
|
| 1515 |
f"输出token: {completion_tokens}, "
|
| 1516 |
f"首字用时: 0, "
|
|
@@ -1519,11 +1534,11 @@ def handsome_chat_completions():
|
|
| 1519 |
f"用户的内容: {user_content_replaced}, "
|
| 1520 |
f"输出的内容: {response_content_replaced}"
|
| 1521 |
)
|
| 1522 |
-
|
| 1523 |
if tool_calls:
|
| 1524 |
log_message += f", tool_calls: {tool_calls}"
|
| 1525 |
-
|
| 1526 |
logging.info(log_message)
|
|
|
|
| 1527 |
with data_lock:
|
| 1528 |
request_timestamps.append(time.time())
|
| 1529 |
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
|
|
@@ -1542,17 +1557,37 @@ def handsome_chat_completions():
|
|
| 1542 |
"index": 0,
|
| 1543 |
"message": {
|
| 1544 |
"role": "assistant",
|
| 1545 |
-
|
|
|
|
| 1546 |
},
|
| 1547 |
"finish_reason": "stop",
|
| 1548 |
}
|
| 1549 |
],
|
| 1550 |
}
|
| 1551 |
-
|
| 1552 |
if tool_calls:
|
| 1553 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1554 |
|
| 1555 |
return jsonify(response_data)
|
|
|
|
|
|
|
| 1556 |
except requests.exceptions.RequestException as e:
|
| 1557 |
logging.error(f"请求转发异常: {e}")
|
| 1558 |
return jsonify({"error": str(e)}), 500
|
|
|
|
| 970 |
}
|
| 971 |
|
| 972 |
if model_name in image_models:
|
| 973 |
+
user_content = ""
|
| 974 |
+
messages = data.get("messages", [])
|
| 975 |
+
for message in messages:
|
| 976 |
+
if message["role"] == "user":
|
| 977 |
+
if isinstance(message["content"], str):
|
| 978 |
+
user_content += message["content"] + " "
|
| 979 |
+
elif isinstance(message["content"], list):
|
| 980 |
+
for item in message["content"]:
|
| 981 |
+
if (
|
| 982 |
+
isinstance(item, dict) and
|
| 983 |
+
item.get("type") == "text"
|
| 984 |
+
):
|
| 985 |
+
user_content += (
|
| 986 |
+
item.get("text", "") +
|
| 987 |
+
" "
|
| 988 |
+
)
|
| 989 |
+
user_content = user_content.strip()
|
| 990 |
+
|
| 991 |
+
siliconflow_data = {
|
| 992 |
"model": model_name,
|
| 993 |
"prompt": user_content,
|
|
|
|
| 994 |
}
|
| 995 |
+
if model_name == "black-forest-labs/FLUX.1-pro":
|
| 996 |
+
siliconflow_data["width"] = data.get("width", 1024)
|
| 997 |
+
siliconflow_data["height"] = data.get("height", 768)
|
| 998 |
+
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
|
| 999 |
+
siliconflow_data["image_prompt"] = data.get("image_prompt")
|
| 1000 |
+
siliconflow_data["steps"] = data.get("steps", 20)
|
| 1001 |
+
siliconflow_data["guidance"] = data.get("guidance", 3)
|
| 1002 |
+
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
|
| 1003 |
+
siliconflow_data["interval"] = data.get("interval", 2)
|
| 1004 |
+
siliconflow_data["output_format"] = data.get("output_format", "png")
|
| 1005 |
+
seed = data.get("seed")
|
| 1006 |
+
if isinstance(seed, int) and 0 < seed < 9999999999:
|
| 1007 |
siliconflow_data["seed"] = seed
|
| 1008 |
+
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
|
| 1009 |
+
siliconflow_data["width"] = 1024
|
| 1010 |
+
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
|
| 1011 |
+
siliconflow_data["height"] = 768
|
| 1012 |
+
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
|
|
|
| 1013 |
siliconflow_data["steps"] = 20
|
| 1014 |
+
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
|
| 1015 |
siliconflow_data["guidance"] = 3
|
| 1016 |
+
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
|
| 1017 |
+
siliconflow_data["safety_tolerance"] = 2
|
| 1018 |
+
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
|
| 1019 |
siliconflow_data["interval"] = 2
|
| 1020 |
+
else:
|
| 1021 |
+
siliconflow_data["image_size"] = "1024x1024"
|
| 1022 |
+
siliconflow_data["batch_size"] = 1
|
| 1023 |
+
siliconflow_data["num_inference_steps"] = 20
|
| 1024 |
+
siliconflow_data["guidance_scale"] = 7.5
|
| 1025 |
+
siliconflow_data["prompt_enhancement"] = False
|
| 1026 |
+
|
| 1027 |
+
if data.get("size"):
|
| 1028 |
+
siliconflow_data["image_size"] = data.get("size")
|
| 1029 |
+
if data.get("n"):
|
| 1030 |
+
siliconflow_data["batch_size"] = data.get("n")
|
| 1031 |
+
if data.get("steps"):
|
| 1032 |
+
siliconflow_data["num_inference_steps"] = data.get("steps")
|
| 1033 |
+
if data.get("guidance_scale"):
|
| 1034 |
+
siliconflow_data["guidance_scale"] = data.get("guidance_scale")
|
| 1035 |
+
if data.get("negative_prompt"):
|
| 1036 |
+
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
|
| 1037 |
+
if data.get("seed"):
|
| 1038 |
+
siliconflow_data["seed"] = data.get("seed")
|
| 1039 |
+
if data.get("prompt_enhancement"):
|
| 1040 |
+
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement")
|
| 1041 |
+
if siliconflow_data["batch_size"] < 1:
|
|
|
|
| 1042 |
siliconflow_data["batch_size"] = 1
|
| 1043 |
+
if siliconflow_data["batch_size"] > 4:
|
| 1044 |
siliconflow_data["batch_size"] = 4
|
| 1045 |
|
| 1046 |
+
if siliconflow_data["num_inference_steps"] < 1:
|
| 1047 |
+
siliconflow_data["num_inference_steps"] = 1
|
| 1048 |
+
if siliconflow_data["num_inference_steps"] > 50:
|
| 1049 |
siliconflow_data["num_inference_steps"] = 50
|
| 1050 |
+
|
| 1051 |
+
if siliconflow_data["guidance_scale"] < 0:
|
| 1052 |
siliconflow_data["guidance_scale"] = 0
|
| 1053 |
+
if siliconflow_data["guidance_scale"] > 100:
|
| 1054 |
siliconflow_data["guidance_scale"] = 100
|
| 1055 |
|
| 1056 |
+
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]:
|
| 1057 |
+
siliconflow_data["image_size"] = "1024x1024"
|
| 1058 |
+
|
| 1059 |
+
try:
|
| 1060 |
start_time = time.time()
|
| 1061 |
response = requests.post(
|
| 1062 |
+
"https://api-st.siliconflow.cn/v1/images/generations",
|
| 1063 |
+
headers=headers,
|
| 1064 |
+
json=siliconflow_data,
|
| 1065 |
+
timeout=120,
|
| 1066 |
+
stream=data.get("stream", False)
|
| 1067 |
)
|
|
|
|
| 1068 |
if response.status_code == 429:
|
| 1069 |
+
return jsonify(response.json()), 429
|
| 1070 |
|
| 1071 |
if data.get("stream", False):
|
| 1072 |
+
def generate():
|
| 1073 |
+
first_chunk_time = None
|
| 1074 |
+
full_response_content = ""
|
| 1075 |
+
try:
|
| 1076 |
+
response.raise_for_status()
|
| 1077 |
+
end_time = time.time()
|
| 1078 |
+
response_json = response.json()
|
| 1079 |
+
total_time = end_time - start_time
|
| 1080 |
|
| 1081 |
+
images = response_json.get("images", [])
|
| 1082 |
+
|
| 1083 |
+
image_url = ""
|
| 1084 |
+
if images and isinstance(images[0], dict) and "url" in images[0]:
|
| 1085 |
+
image_url = images[0]["url"]
|
| 1086 |
+
logging.info(f"Extracted image URL: {image_url}")
|
| 1087 |
+
elif images and isinstance(images[0], str):
|
| 1088 |
+
image_url = images[0]
|
| 1089 |
+
logging.info(f"Extracted image URL: {image_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1090 |
|
| 1091 |
+
markdown_image_link = f""
|
| 1092 |
+
if image_url:
|
| 1093 |
+
chunk_data = {
|
| 1094 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1095 |
+
"object": "chat.completion.chunk",
|
| 1096 |
+
"created": int(time.time()),
|
| 1097 |
+
"model": model_name,
|
| 1098 |
+
"choices": [
|
| 1099 |
+
{
|
| 1100 |
+
"index": 0,
|
| 1101 |
+
"delta": {
|
| 1102 |
+
"role": "assistant",
|
| 1103 |
+
"content": markdown_image_link
|
| 1104 |
+
},
|
| 1105 |
+
"finish_reason": None
|
| 1106 |
+
}
|
| 1107 |
+
]
|
| 1108 |
+
}
|
| 1109 |
+
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
| 1110 |
+
full_response_content = markdown_image_link
|
| 1111 |
+
else:
|
| 1112 |
+
chunk_data = {
|
| 1113 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1114 |
+
"object": "chat.completion.chunk",
|
| 1115 |
+
"created": int(time.time()),
|
| 1116 |
+
"model": model_name,
|
| 1117 |
+
"choices": [
|
| 1118 |
+
{
|
| 1119 |
+
"index": 0,
|
| 1120 |
+
"delta": {
|
| 1121 |
+
"role": "assistant",
|
| 1122 |
+
"content": "Failed to generate image"
|
| 1123 |
+
},
|
| 1124 |
+
"finish_reason": None
|
| 1125 |
+
}
|
| 1126 |
+
]
|
| 1127 |
+
}
|
| 1128 |
+
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8')
|
| 1129 |
+
full_response_content = "Failed to generate image"
|
| 1130 |
+
|
| 1131 |
+
end_chunk_data = {
|
| 1132 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1133 |
+
"object": "chat.completion.chunk",
|
| 1134 |
+
"created": int(time.time()),
|
| 1135 |
+
"model": model_name,
|
| 1136 |
+
"choices": [
|
| 1137 |
+
{
|
| 1138 |
+
"index": 0,
|
| 1139 |
+
"delta": {},
|
| 1140 |
+
"finish_reason": "stop"
|
| 1141 |
+
}
|
| 1142 |
+
]
|
| 1143 |
+
}
|
| 1144 |
+
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
| 1145 |
+
with data_lock:
|
| 1146 |
+
request_timestamps.append(time.time())
|
| 1147 |
+
token_counts.append(0)
|
| 1148 |
+
except requests.exceptions.RequestException as e:
|
| 1149 |
+
logging.error(f"请求转发异常: {e}")
|
| 1150 |
+
error_chunk_data = {
|
| 1151 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1152 |
+
"object": "chat.completion.chunk",
|
| 1153 |
+
"created": int(time.time()),
|
| 1154 |
+
"model": model_name,
|
| 1155 |
+
"choices": [
|
| 1156 |
+
{
|
| 1157 |
+
"index": 0,
|
| 1158 |
+
"delta": {
|
| 1159 |
+
"role": "assistant",
|
| 1160 |
+
"content": f"Error: {str(e)}"
|
| 1161 |
+
},
|
| 1162 |
+
"finish_reason": None
|
| 1163 |
+
}
|
| 1164 |
+
]
|
| 1165 |
+
}
|
| 1166 |
+
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
| 1167 |
+
end_chunk_data = {
|
| 1168 |
+
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1169 |
+
"object": "chat.completion.chunk",
|
| 1170 |
+
"created": int(time.time()),
|
| 1171 |
+
"model": model_name,
|
| 1172 |
+
"choices": [
|
| 1173 |
+
{
|
| 1174 |
+
"index": 0,
|
| 1175 |
+
"delta": {},
|
| 1176 |
+
"finish_reason": "stop"
|
| 1177 |
+
}
|
| 1178 |
+
]
|
| 1179 |
+
}
|
| 1180 |
+
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
| 1181 |
+
logging.info(
|
| 1182 |
+
f"使用的key: {api_key}, "
|
| 1183 |
+
f"使用的模型: {model_name}"
|
| 1184 |
+
)
|
| 1185 |
+
yield "data: [DONE]\n\n".encode('utf-8')
|
| 1186 |
+
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
| 1187 |
|
| 1188 |
else:
|
| 1189 |
response.raise_for_status()
|
|
|
|
| 1242 |
}
|
| 1243 |
|
| 1244 |
logging.info(
|
| 1245 |
+
f"使用的key: {api_key}, "
|
| 1246 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 1247 |
+
f"使用的模型: {model_name}"
|
| 1248 |
)
|
| 1249 |
with data_lock:
|
| 1250 |
+
request_timestamps.append(time.time())
|
| 1251 |
+
token_counts.append(0)
|
| 1252 |
return jsonify(response_data)
|
| 1253 |
|
| 1254 |
+
except requests.exceptions.RequestException as e:
|
| 1255 |
logging.error(f"请求转发异常: {e}")
|
| 1256 |
return jsonify({"error": str(e)}), 500
|
| 1257 |
else:
|
| 1258 |
tools = data.get("tools")
|
| 1259 |
tool_choice = data.get("tool_choice")
|
| 1260 |
+
|
| 1261 |
siliconflow_data = {
|
| 1262 |
"model": model_name,
|
| 1263 |
"messages": data.get("messages", []),
|
|
|
|
| 1309 |
prompt_tokens = 0
|
| 1310 |
completion_tokens = 0
|
| 1311 |
response_content = ""
|
| 1312 |
+
function_call = None
|
| 1313 |
tool_calls = []
|
| 1314 |
+
|
| 1315 |
for line in full_response_content.splitlines():
|
| 1316 |
if line.startswith("data:"):
|
| 1317 |
+
line = line[5:].strip()
|
| 1318 |
+
if line == "[DONE]":
|
| 1319 |
continue
|
| 1320 |
+
try:
|
| 1321 |
response_json = json.loads(line)
|
|
|
|
| 1322 |
if (
|
| 1323 |
"usage" in response_json and
|
| 1324 |
"completion_tokens" in response_json["usage"]
|
|
|
|
| 1345 |
if "tool_calls" in message:
|
| 1346 |
tool_calls.extend(message["tool_calls"])
|
| 1347 |
|
|
|
|
| 1348 |
if (
|
| 1349 |
"usage" in response_json and
|
| 1350 |
"prompt_tokens" in response_json["usage"]
|
|
|
|
| 1353 |
"usage"
|
| 1354 |
]["prompt_tokens"]
|
| 1355 |
|
| 1356 |
+
|
| 1357 |
+
except (
|
| 1358 |
KeyError,
|
| 1359 |
ValueError,
|
| 1360 |
IndexError
|
| 1361 |
+
) as e:
|
| 1362 |
+
logging.error(
|
| 1363 |
f"解析流式响应单行 JSON 失败: {e}, "
|
| 1364 |
f"行内容: {line}"
|
| 1365 |
+
)
|
| 1366 |
|
| 1367 |
user_content = ""
|
| 1368 |
messages = data.get("messages", [])
|
| 1369 |
for message in messages:
|
| 1370 |
+
if message["role"] == "user":
|
| 1371 |
+
if isinstance(message["content"], str):
|
| 1372 |
user_content += message["content"] + " "
|
| 1373 |
+
elif isinstance(message["content"], list):
|
| 1374 |
for item in message["content"]:
|
| 1375 |
if (
|
| 1376 |
isinstance(item, dict) and
|
|
|
|
| 1388 |
response_content_replaced = response_content.replace(
|
| 1389 |
'\n', '\\n'
|
| 1390 |
).replace('\r', '\\n')
|
| 1391 |
+
|
| 1392 |
log_message = (
|
| 1393 |
f"使用的key: {api_key}, "
|
| 1394 |
f"提示token: {prompt_tokens}, "
|
|
|
|
| 1399 |
f"用户的内容: {user_content_replaced}, "
|
| 1400 |
f"输出的内容: {response_content_replaced}"
|
| 1401 |
)
|
| 1402 |
+
|
| 1403 |
if tool_calls:
|
| 1404 |
+
log_message += f", tool_calls: {tool_calls}"
|
| 1405 |
+
|
| 1406 |
logging.info(log_message)
|
| 1407 |
|
| 1408 |
with data_lock:
|
| 1409 |
request_timestamps.append(time.time())
|
| 1410 |
token_counts.append(prompt_tokens+completion_tokens)
|
| 1411 |
+
|
|
|
|
|
|
|
| 1412 |
# 构造 OpenAI 格式的响应数据
|
| 1413 |
response_data = {
|
| 1414 |
"id": f"chatcmpl-{uuid.uuid4()}",
|
|
|
|
| 1425 |
}
|
| 1426 |
]
|
| 1427 |
}
|
|
|
|
|
|
|
|
|
|
| 1428 |
|
| 1429 |
if tool_calls:
|
| 1430 |
+
if isinstance(tool_calls, list) and len(tool_calls) > 0:
|
| 1431 |
+
|
| 1432 |
+
first_tool_call = tool_calls[0]
|
| 1433 |
+
if isinstance(first_tool_call, dict) and "function" in first_tool_call:
|
| 1434 |
+
function_call_data = first_tool_call.get("function")
|
| 1435 |
+
if isinstance(function_call_data, dict) and "name" in function_call_data and "arguments" in function_call_data:
|
| 1436 |
+
function_call = {
|
| 1437 |
+
"name": function_call_data["name"],
|
| 1438 |
+
"arguments": json.dumps(function_call_data["arguments"]) if isinstance(function_call_data.get("arguments"), dict) else function_call_data["arguments"]
|
| 1439 |
+
}
|
| 1440 |
+
response_data["choices"][0]["delta"]["function_call"] = function_call
|
| 1441 |
+
response_data["choices"][0]["delta"]["content"] = None
|
| 1442 |
+
response_data["choices"][0]["finish_reason"] = "function_call"
|
| 1443 |
+
else:
|
| 1444 |
+
response_data["choices"][0]["delta"]["tool_calls"] = tool_calls
|
| 1445 |
+
response_data["choices"][0]["delta"]["content"] = None
|
| 1446 |
+
else:
|
| 1447 |
+
response_data["choices"][0]["delta"]["tool_calls"] = tool_calls
|
| 1448 |
+
response_data["choices"][0]["delta"]["content"] = None
|
| 1449 |
+
elif response_content:
|
| 1450 |
+
response_data["choices"][0]["delta"]["content"] = response_content
|
| 1451 |
+
|
| 1452 |
+
|
| 1453 |
yield f"data: {json.dumps(response_data)}\n\n".encode('utf-8')
|
| 1454 |
|
| 1455 |
end_chunk_data = {
|
|
|
|
| 1484 |
response_content = response_json[
|
| 1485 |
"choices"
|
| 1486 |
][0]["message"]["content"]
|
|
|
|
| 1487 |
if "tool_calls" in response_json["choices"][0]["message"]:
|
| 1488 |
tool_calls = response_json["choices"][0]["message"]["tool_calls"]
|
| 1489 |
else:
|
| 1490 |
+
tool_calls = []
|
| 1491 |
except (KeyError, ValueError, IndexError) as e:
|
| 1492 |
logging.error(
|
| 1493 |
f"解析非流式响应 JSON 失败: {e}, "
|
|
|
|
| 1511 |
item.get("type") == "text"
|
| 1512 |
):
|
| 1513 |
user_content += (
|
| 1514 |
+
item.get("text", "") +
|
| 1515 |
+
" "
|
| 1516 |
)
|
| 1517 |
|
| 1518 |
user_content = user_content.strip()
|
|
|
|
| 1523 |
response_content_replaced = response_content.replace(
|
| 1524 |
'\n', '\\n'
|
| 1525 |
).replace('\r', '\\n')
|
| 1526 |
+
|
| 1527 |
log_message = (
|
| 1528 |
+
f"使用的key: {api_key}, "
|
| 1529 |
f"提示token: {prompt_tokens}, "
|
| 1530 |
f"输出token: {completion_tokens}, "
|
| 1531 |
f"首字用时: 0, "
|
|
|
|
| 1534 |
f"用户的内容: {user_content_replaced}, "
|
| 1535 |
f"输出的内容: {response_content_replaced}"
|
| 1536 |
)
|
|
|
|
| 1537 |
if tool_calls:
|
| 1538 |
log_message += f", tool_calls: {tool_calls}"
|
| 1539 |
+
|
| 1540 |
logging.info(log_message)
|
| 1541 |
+
|
| 1542 |
with data_lock:
|
| 1543 |
request_timestamps.append(time.time())
|
| 1544 |
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]:
|
|
|
|
| 1557 |
"index": 0,
|
| 1558 |
"message": {
|
| 1559 |
"role": "assistant",
|
| 1560 |
+
"content": response_content,
|
| 1561 |
+
|
| 1562 |
},
|
| 1563 |
"finish_reason": "stop",
|
| 1564 |
}
|
| 1565 |
],
|
| 1566 |
}
|
|
|
|
| 1567 |
if tool_calls:
|
| 1568 |
+
if isinstance(tool_calls, list) and len(tool_calls) > 0:
|
| 1569 |
+
first_tool_call = tool_calls[0]
|
| 1570 |
+
if isinstance(first_tool_call, dict) and "function" in first_tool_call:
|
| 1571 |
+
function_call_data = first_tool_call.get("function")
|
| 1572 |
+
if isinstance(function_call_data, dict) and "name" in function_call_data and "arguments" in function_call_data:
|
| 1573 |
+
function_call = {
|
| 1574 |
+
"name": function_call_data["name"],
|
| 1575 |
+
"arguments": json.dumps(function_call_data["arguments"]) if isinstance(function_call_data.get("arguments"), dict) else function_call_data["arguments"]
|
| 1576 |
+
}
|
| 1577 |
+
response_data["choices"][0]["message"]["function_call"] = function_call
|
| 1578 |
+
response_data["choices"][0]["message"]["content"] = None
|
| 1579 |
+
response_data["choices"][0]["finish_reason"] = "function_call"
|
| 1580 |
+
else:
|
| 1581 |
+
response_data["choices"][0]["message"]["tool_calls"] = tool_calls
|
| 1582 |
+
response_data["choices"][0]["message"]["content"] = None
|
| 1583 |
+
else:
|
| 1584 |
+
response_data["choices"][0]["message"]["tool_calls"] = tool_calls
|
| 1585 |
+
response_data["choices"][0]["message"]["content"] = None
|
| 1586 |
+
|
| 1587 |
|
| 1588 |
return jsonify(response_data)
|
| 1589 |
+
|
| 1590 |
+
|
| 1591 |
except requests.exceptions.RequestException as e:
|
| 1592 |
logging.error(f"请求转发异常: {e}")
|
| 1593 |
return jsonify({"error": str(e)}), 500
|