import gradio as gr from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import requests img1_url = 'https://static3.depositphotos.com/1003410/160/i/450/depositphotos_1607848-stock-photo-portrait-of-old-man.jpg' img1 = Image.open(requests.get(img1_url, stream=True).raw) img2_url = "https://img.freepik.com/free-photo/excited-screaming-young-woman-standing-isolated-yellow_176420-39645.jpg" img2 = Image.open(requests.get(img2_url, stream=True).raw) img3_url = "https://img.freepik.com/free-photo/cute-adorable-boy-studio_58702-7629.jpg" img3 = Image.open(requests.get(img3_url, stream=True).raw) def age_emot_classifier(input_image): # Init model, transforms model_age = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier') transforms_age = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier') model_emot = ViTForImageClassification.from_pretrained("yangswei/visual-emotion-classification") transforms_emot = ViTFeatureExtractor.from_pretrained("yangswei/visual-emotion-classification") # Transform our image and pass it through the model inputs_age = transforms_age(input_image, return_tensors='pt') output_age = model_age(**inputs_age) inputs_emot = transforms_emot(input_image, return_tensors='pt') output_emot = model_emot(**inputs_emot) # Predicted Class probabilities proba_age = output_age.logits.softmax(1) proba_emot = output_emot.logits.softmax(1) # Predicted Classes With Confidences labels_age = model_age.config.id2label confidences_age = {labels_age[i]: proba_age[0][i].item() for i in range(len(labels_age))} labels_emot = model_emot.config.id2label confidences_emot = {labels_emot[i]: proba_emot[0][i].item() for i in range(len(labels_emot))} return confidences_age, confidences_emot output_age = gr.Label(num_top_classes=9, label="Age Prediction") output_emotion = gr.Label(num_top_classes=8, label="Emotion Prediction") with gr.Blocks(theme=gr.themes.Glass()) as demo: gr.Interface(fn=age_emot_classifier, inputs="image", outputs=[output_age, output_emotion], examples=[img1, img2, img3]) demo.launch()