# Pytorch Multi-Scale Structural Similarity Index (SSIM) # This code is written by jorge-pessoa (https://github.com/jorge-pessoa/pytorch-msssim) # MIT licence import math from math import exp import torch import torch.nn.functional as F from torch.autograd import Variable # +++++++++++++++++++++++++++++++++++++ # SSIM # ------------------------------------- def gaussian(window_size, sigma): gauss = torch.Tensor( [ exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) for x in range(window_size) ] ) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable( _2D_window.expand(channel, 1, window_size, window_size).contiguous() ) return window def _ssim(img1, img2, window, window_size, channel, size_average=True, full=False): padd = 0 mu1 = F.conv2d(img1, window, padding=padd, groups=channel) mu2 = F.conv2d(img2, window, padding=padd, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2 C1 = 0.01**2 C2 = 0.03**2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ( (mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) ) v1 = 2.0 * sigma12 + C2 v2 = sigma1_sq + sigma2_sq + C2 cs = torch.mean(v1 / v2) if size_average: ret = ssim_map.mean() else: ret = ssim_map.mean(1).mean(1).mean(1) if full: return ret, cs return ret class SSIM(torch.nn.Module): def __init__(self, window_size=11, size_average=True): super(SSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window(window_size, self.channel) def forward(self, img1, img2): (_, channel, _, _) = img1.size() if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = create_window(self.window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return _ssim(img1, img2, window, self.window_size, channel, self.size_average) def ssim(img1, img2, window_size=11, size_average=True, full=False): (_, channel, height, width) = img1.size() real_size = min(window_size, height, width) window = create_window(real_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, real_size, channel, size_average, full=full) def msssim(img1, img2, window_size=11, size_average=True): # TODO: fix NAN results if img1.size() != img2.size(): raise RuntimeError( "Input images must have the same shape (%s vs. %s)." % (img1.size(), img2.size()) ) if len(img1.size()) != 4: raise RuntimeError( "Input images must have four dimensions, not %d" % len(img1.size()) ) weights = torch.tensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=img1.dtype) if img1.is_cuda: weights = weights.cuda(img1.get_device()) levels = weights.size()[0] mssim = [] mcs = [] for _ in range(levels): sim, cs = ssim( img1, img2, window_size=window_size, size_average=size_average, full=True ) mssim.append(sim) mcs.append(cs) img1 = F.avg_pool2d(img1, (2, 2)) img2 = F.avg_pool2d(img2, (2, 2)) mssim = torch.stack(mssim) mcs = torch.stack(mcs) return torch.prod(mcs[0 : levels - 1] ** weights[0 : levels - 1]) * ( mssim[levels - 1] ** weights[levels - 1] ) class MSSSIM(torch.nn.Module): def __init__(self, window_size=11, size_average=True, channel=3): super(MSSSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = channel def forward(self, img1, img2): # TODO: store window between calls if possible return msssim( img1, img2, window_size=self.window_size, size_average=self.size_average ) def calc_psnr(sr, hr, scale=0, benchmark=False): # adapt from EDSR: https://github.com/thstkdgus35/EDSR-PyTorch diff = (sr - hr).data if benchmark: shave = scale if diff.size(1) > 1: convert = diff.new(1, 3, 1, 1) convert[0, 0, 0, 0] = 65.738 convert[0, 1, 0, 0] = 129.057 convert[0, 2, 0, 0] = 25.064 diff.mul_(convert).div_(256) diff = diff.sum(dim=1, keepdim=True) else: shave = scale + 6 valid = diff[:, :, shave:-shave, shave:-shave] mse = valid.pow(2).mean() return -10 * math.log10(mse) # +++++++++++++++++++++++++++++++++++++ # PSNR # ------------------------------------- from torch import nn def psnr(predict, target): with torch.no_grad(): criteria = nn.MSELoss() mse = criteria(predict, target) return -10 * torch.log10(mse)