yangheng's picture
init
9842c28
raw
history blame
7.8 kB
# flake8: noqa
# This file is used for deploying replicate models
# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
# push: cog push r8.im/xinntao/realesrgan
import os
os.system("pip install gfpgan")
os.system("python setup.py develop")
import cv2
import shutil
import tempfile
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
try:
from cog import BasePredictor, Input, Path
from gfpgan import GFPGANer
except Exception:
print("please install cog and realesrgan package")
class Predictor(BasePredictor):
def setup(self):
os.makedirs("output", exist_ok=True)
# download weights
if not os.path.exists("weights/realesr-general-x4v3.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights"
)
if not os.path.exists("weights/GFPGANv1.4.pth"):
os.system(
"wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights"
)
if not os.path.exists("weights/RealESRGAN_x4plus.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights"
)
if not os.path.exists("weights/RealESRGAN_x4plus_anime_6B.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights"
)
if not os.path.exists("weights/realesr-animevideov3.pth"):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights"
)
def choose_model(self, scale, version, tile=0):
half = True if torch.cuda.is_available() else False
if version == "General - RealESRGANplus":
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
model_path = "weights/RealESRGAN_x4plus.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
elif version == "General - v3":
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=32,
upscale=4,
act_type="prelu",
)
model_path = "weights/realesr-general-x4v3.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
elif version == "Anime - anime6B":
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=6,
num_grow_ch=32,
scale=4,
)
model_path = "weights/RealESRGAN_x4plus_anime_6B.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
elif version == "AnimeVideo - v3":
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=16,
upscale=4,
act_type="prelu",
)
model_path = "weights/realesr-animevideov3.pth"
self.upsampler = RealESRGANer(
scale=4,
model_path=model_path,
model=model,
tile=tile,
tile_pad=10,
pre_pad=0,
half=half,
)
self.face_enhancer = GFPGANer(
model_path="weights/GFPGANv1.4.pth",
upscale=scale,
arch="clean",
channel_multiplier=2,
bg_upsampler=self.upsampler,
)
def predict(
self,
img: Path = Input(description="Input"),
version: str = Input(
description="RealESRGAN version. Please see [Readme] below for more descriptions",
choices=[
"General - RealESRGANplus",
"General - v3",
"Anime - anime6B",
"AnimeVideo - v3",
],
default="General - v3",
),
scale: float = Input(description="Rescaling factor", default=2),
face_enhance: bool = Input(
description="Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes",
default=False,
),
tile: int = Input(
description="Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200",
default=0,
),
) -> Path:
if tile <= 100 or tile is None:
tile = 0
print(
f"img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}."
)
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = "RGBA"
elif len(img.shape) == 2:
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
self.choose_model(scale, version, tile)
try:
if face_enhance:
_, _, output = self.face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True
)
else:
output, _ = self.upsampler.enhance(img, outscale=scale)
except RuntimeError as error:
print("Error", error)
print(
'If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.'
)
if img_mode == "RGBA": # RGBA images should be saved in png format
extension = "png"
# save_path = f'output/out.{extension}'
# cv2.imwrite(save_path, output)
out_path = Path(tempfile.mkdtemp()) / f"out.{extension}"
cv2.imwrite(str(out_path), output)
except Exception as error:
print("global exception: ", error)
finally:
clean_folder("output")
return out_path
def clean_folder(folder):
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")