import json import os import numpy as np import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results from src.display.utils import AutoEvalColumnRGB, AutoEvalColumnPGB,\ AutoEvalColumnGUE, AutoEvalColumnGB from src.about import TasksRGB, TasksPGB, TasksGUE, TasksGB def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" print(f"RESULTS PATH: {results_path}") raw_data = get_raw_eval_results(results_path, requests_path) for result in raw_data: result.average = np.mean(list(result.results.values())) sorted_results = sorted(raw_data, key=lambda r: r.average, reverse=True) print(sorted_results) # ranks = [rank+1 for rank, value in enumerate(sorted_results)] # rank = [rank+1 for rank, value in enumerate(average)] if "RGB" in results_path: all_data_json = [v.to_dict(i+1, AutoEvalColumnRGB, TasksRGB) for i, v in enumerate(raw_data)] elif "PGB" in results_path: all_data_json = [v.to_dict(i+1, AutoEvalColumnPGB, TasksPGB) for i, v in enumerate(raw_data)] elif "GUE" in results_path: all_data_json = [v.to_dict(i+1, AutoEvalColumnGUE, TasksGUE) for i, v in enumerate(raw_data)] else: all_data_json = [v.to_dict(i+1, AutoEvalColumnGB, TasksGB) for i, v in enumerate(raw_data)] # all_data_json = [v.to_dict(i + 1) for i, v in enumerate(raw_data)] df = pd.DataFrame.from_records(all_data_json) # df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) print(f"Cols: {cols}") print(f"DF: {df}") df = df[cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] print(df) return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] print(entries) entries = [entry for entry in entries if not entry.startswith(".")] print(entries) for entry in entries: print(entries) if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] # for sub_entry in sub_entries: # file_path = os.path.join(save_path, entry, sub_entry) # with open(file_path) as fp: # data = json.load(fp) # data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) # data[EvalQueueColumn.revision.name] = data.get("revision", "main") # all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]