import sys import warnings warnings.filterwarnings('ignore') warnings.simplefilter('ignore') import argparse import multiprocessing as mp import os import subprocess as sp from shutil import copyfile import numpy as np import torch from IPython.display import Image as Image_colab from IPython.display import display, SVG, clear_output from ipywidgets import IntSlider, Output, IntProgress, Button import time parser = argparse.ArgumentParser() parser.add_argument("--target_file", type=str, help="target image file, located in ") parser.add_argument("--num_strokes", type=int, default=16, help="number of strokes used to generate the sketch, this defines the level of abstraction.") parser.add_argument("--num_iter", type=int, default=2001, help="number of iterations") parser.add_argument("--fix_scale", type=int, default=0, help="if the target image is not squared, it is recommended to fix the scale") parser.add_argument("--mask_object", type=int, default=0, help="if the target image contains background, it's better to mask it out") parser.add_argument("--num_sketches", type=int, default=3, help="it is recommended to draw 3 sketches and automatically chose the best one") parser.add_argument("--multiprocess", type=int, default=0, help="recommended to use multiprocess if your computer has enough memory") parser.add_argument('-colab', action='store_true') parser.add_argument('-cpu', action='store_true') parser.add_argument('-display', action='store_true') parser.add_argument('--gpunum', type=int, default=0) args = parser.parse_args() multiprocess = not args.colab and args.num_sketches > 1 and args.multiprocess abs_path = os.path.abspath(os.getcwd()) target = f"{abs_path}/target_images/{args.target_file}" assert os.path.isfile(target), f"{target} does not exists!" if not os.path.isfile(f"{abs_path}/U2Net_/saved_models/u2net.pth"): sp.run(["gdown", "https://drive.google.com/uc?id=1ao1ovG1Qtx4b7EoskHXmi2E9rp5CHLcZ", "-O", "U2Net_/saved_models/"]) test_name = os.path.splitext(args.target_file)[0] output_dir = f"{abs_path}/output_sketches/{test_name}/" if not os.path.exists(output_dir): os.makedirs(output_dir) num_iter = args.num_iter save_interval = 10 use_gpu = not args.cpu if not torch.cuda.is_available(): use_gpu = False print("CUDA is not configured with GPU, running with CPU instead.") print("Note that this will be very slow, it is recommended to use colab.") if args.colab: print("=" * 50) print(f"Processing [{args.target_file}] ...") if args.colab or args.display: img_ = Image_colab(target) display(img_) print(f"GPU: {use_gpu}, {torch.cuda.current_device()}") print(f"Results will be saved to \n[{output_dir}] ...") print("=" * 50) seeds = list(range(0, args.num_sketches * 1000, 1000)) exit_codes = [] manager = mp.Manager() losses_all = manager.dict() def run(seed, wandb_name): exit_code = sp.run(["python", "painterly_rendering.py", target, "--num_paths", str(args.num_strokes), "--output_dir", output_dir, "--wandb_name", wandb_name, "--num_iter", str(num_iter), "--save_interval", str(save_interval), "--seed", str(seed), "--use_gpu", str(int(use_gpu)), "--fix_scale", str(args.fix_scale), "--mask_object", str(args.mask_object), "--mask_object_attention", str( args.mask_object), "--display_logs", str(int(args.colab)), "--display", str(int(args.display))]) if exit_code.returncode: sys.exit(1) config = np.load(f"{output_dir}/{wandb_name}/config.npy", allow_pickle=True)[()] loss_eval = np.array(config['loss_eval']) inds = np.argsort(loss_eval) losses_all[wandb_name] = loss_eval[inds][0] def display_(seed, wandb_name): path_to_svg = f"{output_dir}/{wandb_name}/svg_logs/" intervals_ = list(range(0, num_iter, save_interval)) filename = f"svg_iter0.svg" display(IntSlider()) out = Output() display(out) for i in intervals_: filename = f"svg_iter{i}.svg" not_exist = True while not_exist: not_exist = not os.path.isfile(f"{path_to_svg}/{filename}") continue with out: clear_output() print("") display(IntProgress( value=i, min=0, max=num_iter, description='Processing:', bar_style='info', # 'success', 'info', 'warning', 'danger' or '' style={'bar_color': 'maroon'}, orientation='horizontal' )) display(SVG(f"{path_to_svg}/svg_iter{i}.svg")) if multiprocess: ncpus = 10 P = mp.Pool(ncpus) # Generate pool of workers for seed in seeds: wandb_name = f"{test_name}_{args.num_strokes}strokes_seed{seed}" if multiprocess: P.apply_async(run, (seed, wandb_name)) else: run(seed, wandb_name) if args.display: time.sleep(10) P.apply_async(display_, (0, f"{test_name}_{args.num_strokes}strokes_seed0")) if multiprocess: P.close() P.join() # start processes sorted_final = dict(sorted(losses_all.items(), key=lambda item: item[1])) copyfile(f"{output_dir}/{list(sorted_final.keys())[0]}/best_iter.svg", f"{output_dir}/{list(sorted_final.keys())[0]}_best.svg")