import streamlit as st # from st_btn_select import st_btn_select import tempfile ###### 从webui借用的代码 ##### ###### 做了少量修改 ##### import os import shutil from chains.local_doc_qa import LocalDocQA from configs.model_config import * import nltk from models.base import (BaseAnswer, AnswerResult,) import models.shared as shared from models.loader.args import parser from models.loader import LoaderCheckPoint nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path def get_vs_list(): lst_default = ["新建知识库"] if not os.path.exists(KB_ROOT_PATH): return lst_default lst = os.listdir(KB_ROOT_PATH) if not lst: return lst_default lst.sort() return lst_default + lst embedding_model_dict_list = list(embedding_model_dict.keys()) llm_model_dict_list = list(llm_model_dict.keys()) # flag_csv_logger = gr.CSVLogger() def get_answer(query, vs_path, history, mode, score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD, vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_conent: bool = True, chunk_size=CHUNK_SIZE, streaming: bool = STREAMING,): if mode == "Bing搜索问答": for resp, history in local_doc_qa.get_search_result_based_answer( query=query, chat_history=history, streaming=streaming): source = "\n\n" source += "".join( [f"""
出处 [{i + 1}] {doc.metadata["source"]} \n""" f"""{doc.page_content}\n""" f"""
""" for i, doc in enumerate(resp["source_documents"])]) history[-1][-1] += source yield history, "" elif mode == "知识库问答" and vs_path is not None and os.path.exists(vs_path): for resp, history in local_doc_qa.get_knowledge_based_answer( query=query, vs_path=vs_path, chat_history=history, streaming=streaming): source = "\n\n" source += "".join( [f"""
出处 [{i + 1}] {os.path.split(doc.metadata["source"])[-1]}\n""" f"""{doc.page_content}\n""" f"""
""" for i, doc in enumerate(resp["source_documents"])]) history[-1][-1] += source yield history, "" elif mode == "知识库测试": if os.path.exists(vs_path): resp, prompt = local_doc_qa.get_knowledge_based_conent_test(query=query, vs_path=vs_path, score_threshold=score_threshold, vector_search_top_k=vector_search_top_k, chunk_conent=chunk_conent, chunk_size=chunk_size) if not resp["source_documents"]: yield history + [[query, "根据您的设定,没有匹配到任何内容,请确认您设置的知识相关度 Score 阈值是否过小或其他参数是否正确。"]], "" else: source = "\n".join( [ f"""
【知识相关度 Score】:{doc.metadata["score"]} - 【出处{i + 1}】: {os.path.split(doc.metadata["source"])[-1]} \n""" f"""{doc.page_content}\n""" f"""
""" for i, doc in enumerate(resp["source_documents"])]) history.append([query, "以下内容为知识库中满足设置条件的匹配结果:\n\n" + source]) yield history, "" else: yield history + [[query, "请选择知识库后进行测试,当前未选择知识库。"]], "" else: for answer_result in local_doc_qa.llm.generatorAnswer(prompt=query, history=history, streaming=streaming): resp = answer_result.llm_output["answer"] history = answer_result.history history[-1][-1] = resp + ( "\n\n当前知识库为空,如需基于知识库进行问答,请先加载知识库后,再进行提问。" if mode == "知识库问答" else "") yield history, "" logger.info(f"flagging: username={FLAG_USER_NAME},query={query},vs_path={vs_path},mode={mode},history={history}") # flag_csv_logger.flag([query, vs_path, history, mode], username=FLAG_USER_NAME) def init_model(llm_model: str = 'chat-glm-6b', embedding_model: str = 'text2vec'): local_doc_qa = LocalDocQA() # 初始化消息 args = parser.parse_args() args_dict = vars(args) args_dict.update(model=llm_model) shared.loaderCheckPoint = LoaderCheckPoint(args_dict) llm_model_ins = shared.loaderLLM() llm_model_ins.set_history_len(LLM_HISTORY_LEN) try: local_doc_qa.init_cfg(llm_model=llm_model_ins, embedding_model=embedding_model) generator = local_doc_qa.llm.generatorAnswer("你好") for answer_result in generator: print(answer_result.llm_output) reply = """模型已成功加载,可以开始对话,或从右侧选择模式后开始对话""" logger.info(reply) except Exception as e: logger.error(e) reply = """模型未成功加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮""" if str(e) == "Unknown platform: darwin": logger.info("该报错可能因为您使用的是 macOS 操作系统,需先下载模型至本地后执行 Web UI,具体方法请参考项目 README 中本地部署方法及常见问题:" " https://github.com/imClumsyPanda/langchain-ChatGLM") else: logger.info(reply) return local_doc_qa # 暂未使用到,先保留 # def reinit_model(llm_model, embedding_model, llm_history_len, no_remote_model, use_ptuning_v2, use_lora, top_k, history): # try: # llm_model_ins = shared.loaderLLM(llm_model, no_remote_model, use_ptuning_v2) # llm_model_ins.history_len = llm_history_len # local_doc_qa.init_cfg(llm_model=llm_model_ins, # embedding_model=embedding_model, # top_k=top_k) # model_status = """模型已成功重新加载,可以开始对话,或从右侧选择模式后开始对话""" # logger.info(model_status) # except Exception as e: # logger.error(e) # model_status = """模型未成功重新加载,请到页面左上角"模型配置"选项卡中重新选择后点击"加载模型"按钮""" # logger.info(model_status) # return history + [[None, model_status]] def get_vector_store(vs_id, files, sentence_size, history, one_conent, one_content_segmentation): vs_path = os.path.join(KB_ROOT_PATH, vs_id, "vector_store") filelist = [] if not os.path.exists(os.path.join(KB_ROOT_PATH, vs_id, "content")): os.makedirs(os.path.join(KB_ROOT_PATH, vs_id, "content")) if local_doc_qa.llm and local_doc_qa.embeddings: if isinstance(files, list): for file in files: filename = os.path.split(file.name)[-1] shutil.move(file.name, os.path.join( KB_ROOT_PATH, vs_id, "content", filename)) filelist.append(os.path.join( KB_ROOT_PATH, vs_id, "content", filename)) vs_path, loaded_files = local_doc_qa.init_knowledge_vector_store( filelist, vs_path, sentence_size) else: vs_path, loaded_files = local_doc_qa.one_knowledge_add(vs_path, files, one_conent, one_content_segmentation, sentence_size) if len(loaded_files): file_status = f"已添加 {'、'.join([os.path.split(i)[-1] for i in loaded_files if i])} 内容至知识库,并已加载知识库,请开始提问" else: file_status = "文件未成功加载,请重新上传文件" else: file_status = "模型未完成加载,请先在加载模型后再导入文件" vs_path = None logger.info(file_status) return vs_path, None, history + [[None, file_status]] knowledge_base_test_mode_info = ("【注意】\n\n" "1. 您已进入知识库测试模式,您输入的任何对话内容都将用于进行知识库查询," "并仅输出知识库匹配出的内容及相似度分值和及输入的文本源路径,查询的内容并不会进入模型查询。\n\n" "2. 知识相关度 Score 经测试,建议设置为 500 或更低,具体设置情况请结合实际使用调整。" """3. 使用"添加单条数据"添加文本至知识库时,内容如未分段,则内容越多越会稀释各查询内容与之关联的score阈值。\n\n""" "4. 单条内容长度建议设置在100-150左右。\n\n" "5. 本界面用于知识入库及知识匹配相关参数设定,但当前版本中," "本界面中修改的参数并不会直接修改对话界面中参数,仍需前往`configs/model_config.py`修改后生效。" "相关参数将在后续版本中支持本界面直接修改。") webui_title = """ # 🎉langchain-ChatGLM WebUI🎉 👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM) """ ###### ##### ###### todo ##### # 1. streamlit运行方式与一般web服务器不同,使用模块是无法实现单例模式的,所以shared和local_doc_qa都需要进行全局化处理。 # 目前已经实现了local_doc_qa的全局化,后面要考虑shared。 # 2. 当前local_doc_qa是一个全局变量,一方面:任何一个session对其做出修改,都会影响所有session的对话;另一方面,如何处理所有session的请求竞争也是问题。 # 这个暂时无法避免,在配置普通的机器上暂时也无需考虑。 # 3. 目前只包含了get_answer对应的参数,以后可以添加其他参数,如temperature。 ###### ##### ###### 配置项 ##### class ST_CONFIG: user_bg_color = '#77ff77' user_icon = 'https://tse2-mm.cn.bing.net/th/id/OIP-C.LTTKrxNWDr_k74wz6jKqBgHaHa?w=203&h=203&c=7&r=0&o=5&pid=1.7' robot_bg_color = '#ccccee' robot_icon = 'https://ts1.cn.mm.bing.net/th/id/R-C.5302e2cc6f5c7c4933ebb3394e0c41bc?rik=z4u%2b7efba5Mgxw&riu=http%3a%2f%2fcomic-cons.xyz%2fwp-content%2fuploads%2fStar-Wars-avatar-icon-C3PO.png&ehk=kBBvCvpJMHPVpdfpw1GaH%2brbOaIoHjY5Ua9PKcIs%2bAc%3d&risl=&pid=ImgRaw&r=0' default_mode = '知识库问答' defalut_kb = '' ###### ##### class MsgType: ''' 目前仅支持文本类型的输入输出,为以后多模态模型预留图像、视频、音频支持。 ''' TEXT = 1 IMAGE = 2 VIDEO = 3 AUDIO = 4 class TempFile: ''' 为保持与get_vector_store的兼容性,需要将streamlit上传文件转化为其可以接受的方式 ''' def __init__(self, path): self.name = path def init_session(): st.session_state.setdefault('history', []) # def get_query_params(): # ''' # 可以用url参数传递配置参数:llm_model, embedding_model, kb, mode。 # 该参数将覆盖model_config中的配置。处于安全考虑,目前只支持kb和mode # 方便将固定的配置分享给特定的人。 # ''' # params = st.experimental_get_query_params() # return {k: v[0] for k, v in params.items() if v} def robot_say(msg, kb=''): st.session_state['history'].append( {'is_user': False, 'type': MsgType.TEXT, 'content': msg, 'kb': kb}) def user_say(msg): st.session_state['history'].append( {'is_user': True, 'type': MsgType.TEXT, 'content': msg}) def format_md(msg, is_user=False, bg_color='', margin='10%'): ''' 将文本消息格式化为markdown文本 ''' if is_user: bg_color = bg_color or ST_CONFIG.user_bg_color text = f'''
{msg}
''' else: bg_color = bg_color or ST_CONFIG.robot_bg_color text = f'''
{msg}
''' return text def message(msg, is_user=False, msg_type=MsgType.TEXT, icon='', bg_color='', margin='10%', kb='', ): ''' 渲染单条消息。目前仅支持文本 ''' cols = st.columns([1, 10, 1]) empty = cols[1].empty() if is_user: icon = icon or ST_CONFIG.user_icon bg_color = bg_color or ST_CONFIG.user_bg_color cols[2].image(icon, width=40) if msg_type == MsgType.TEXT: text = format_md(msg, is_user, bg_color, margin) empty.markdown(text, unsafe_allow_html=True) else: raise RuntimeError('only support text message now.') else: icon = icon or ST_CONFIG.robot_icon bg_color = bg_color or ST_CONFIG.robot_bg_color cols[0].image(icon, width=40) if kb: cols[0].write(f'({kb})') if msg_type == MsgType.TEXT: text = format_md(msg, is_user, bg_color, margin) empty.markdown(text, unsafe_allow_html=True) else: raise RuntimeError('only support text message now.') return empty def output_messages( user_bg_color='', robot_bg_color='', user_icon='', robot_icon='', ): with chat_box.container(): last_response = None for msg in st.session_state['history']: bg_color = user_bg_color if msg['is_user'] else robot_bg_color icon = user_icon if msg['is_user'] else robot_icon empty = message(msg['content'], is_user=msg['is_user'], icon=icon, msg_type=msg['type'], bg_color=bg_color, kb=msg.get('kb', '') ) if not msg['is_user']: last_response = empty return last_response @st.cache_resource(show_spinner=False, max_entries=1) def load_model(llm_model: str, embedding_model: str): ''' 对应init_model,利用streamlit cache避免模型重复加载 ''' local_doc_qa = init_model(llm_model, embedding_model) robot_say('模型已成功加载,可以开始对话,或从左侧选择模式后开始对话。\n请尽量不要刷新页面,以免模型出错或重复加载。') return local_doc_qa # @st.cache_data def answer(query, vs_path='', history=[], mode='', score_threshold=0, vector_search_top_k=5, chunk_conent=True, chunk_size=100, qa=None ): ''' 对应get_answer,--利用streamlit cache缓存相同问题的答案-- ''' return get_answer(query, vs_path, history, mode, score_threshold, vector_search_top_k, chunk_conent, chunk_size) def load_vector_store( vs_id, files, sentence_size=100, history=[], one_conent=None, one_content_segmentation=None, ): return get_vector_store( local_doc_qa, vs_id, files, sentence_size, history, one_conent, one_content_segmentation, ) # main ui st.set_page_config(webui_title, layout='wide') init_session() # params = get_query_params() # llm_model = params.get('llm_model', LLM_MODEL) # embedding_model = params.get('embedding_model', EMBEDDING_MODEL) with st.spinner(f'正在加载模型({LLM_MODEL} + {EMBEDDING_MODEL}),请耐心等候...'): local_doc_qa = load_model(LLM_MODEL, EMBEDDING_MODEL) def use_kb_mode(m): return m in ['知识库问答', '知识库测试'] # sidebar modes = ['LLM 对话', '知识库问答', 'Bing搜索问答', '知识库测试'] with st.sidebar: def on_mode_change(): m = st.session_state.mode robot_say(f'已切换到"{m}"模式') if m == '知识库测试': robot_say(knowledge_base_test_mode_info) index = 0 try: index = modes.index(ST_CONFIG.default_mode) except: pass mode = st.selectbox('对话模式', modes, index, on_change=on_mode_change, key='mode') with st.expander('模型配置', '知识' not in mode): with st.form('model_config'): index = 0 try: index = llm_model_dict_list.index(LLM_MODEL) except: pass llm_model = st.selectbox('LLM模型', llm_model_dict_list, index) no_remote_model = st.checkbox('加载本地模型', False) use_ptuning_v2 = st.checkbox('使用p-tuning-v2微调过的模型', False) use_lora = st.checkbox('使用lora微调的权重', False) try: index = embedding_model_dict_list.index(EMBEDDING_MODEL) except: pass embedding_model = st.selectbox( 'Embedding模型', embedding_model_dict_list, index) btn_load_model = st.form_submit_button('重新加载模型') if btn_load_model: local_doc_qa = load_model(llm_model, embedding_model) if mode in ['知识库问答', '知识库测试']: vs_list = get_vs_list() vs_list.remove('新建知识库') def on_new_kb(): name = st.session_state.kb_name if name in vs_list: st.error(f'名为“{name}”的知识库已存在。') else: vs_list.append(name) st.session_state.vs_path = name def on_vs_change(): robot_say(f'已加载知识库: {st.session_state.vs_path}') with st.expander('知识库配置', True): cols = st.columns([12, 10]) kb_name = cols[0].text_input( '新知识库名称', placeholder='新知识库名称', label_visibility='collapsed') cols[1].button('新建知识库', on_click=on_new_kb) vs_path = st.selectbox( '选择知识库', vs_list, on_change=on_vs_change, key='vs_path') st.text('') score_threshold = st.slider( '知识相关度阈值', 0, 1000, VECTOR_SEARCH_SCORE_THRESHOLD) top_k = st.slider('向量匹配数量', 1, 20, VECTOR_SEARCH_TOP_K) history_len = st.slider( 'LLM对话轮数', 1, 50, LLM_HISTORY_LEN) # 也许要跟知识库分开设置 local_doc_qa.llm.set_history_len(history_len) chunk_conent = st.checkbox('启用上下文关联', False) st.text('') # chunk_conent = st.checkbox('分割文本', True) # 知识库文本分割入库 chunk_size = st.slider('上下文关联长度', 1, 1000, CHUNK_SIZE) sentence_size = st.slider('文本入库分句长度限制', 1, 1000, SENTENCE_SIZE) files = st.file_uploader('上传知识文件', ['docx', 'txt', 'md', 'csv', 'xlsx', 'pdf'], accept_multiple_files=True) if st.button('添加文件到知识库'): temp_dir = tempfile.mkdtemp() file_list = [] for f in files: file = os.path.join(temp_dir, f.name) with open(file, 'wb') as fp: fp.write(f.getvalue()) file_list.append(TempFile(file)) _, _, history = load_vector_store( vs_path, file_list, sentence_size, [], None, None) st.session_state.files = [] # main body chat_box = st.empty() with st.form('my_form', clear_on_submit=True): cols = st.columns([8, 1]) question = cols[0].text_input( 'temp', key='input_question', label_visibility='collapsed') def on_send(): q = st.session_state.input_question if q: user_say(q) if mode == 'LLM 对话': robot_say('正在思考...') last_response = output_messages() for history, _ in answer(q, history=[], mode=mode): last_response.markdown( format_md(history[-1][-1], False), unsafe_allow_html=True ) elif use_kb_mode(mode): robot_say('正在思考...', vs_path) last_response = output_messages() for history, _ in answer(q, vs_path=os.path.join( KB_ROOT_PATH, vs_path, "vector_store"), history=[], mode=mode, score_threshold=score_threshold, vector_search_top_k=top_k, chunk_conent=chunk_conent, chunk_size=chunk_size): last_response.markdown( format_md(history[-1][-1], False, 'ligreen'), unsafe_allow_html=True ) else: robot_say('正在思考...') last_response = output_messages() st.session_state['history'][-1]['content'] = history[-1][-1] submit = cols[1].form_submit_button('发送', on_click=on_send) output_messages() # st.write(st.session_state['history'])