import torch import random import gradio as gr from diffusers import StableDiffusionControlNetPipeline from annotator.util import resize_image, HWC3 # Load the pipeline pipe = StableDiffusionControlNetPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cuda") def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold): with torch.no_grad(): img = resize_image(HWC3(input_image), image_resolution) if seed == -1: seed = random.randint(0, 65535) generator = torch.manual_seed(seed) # Generate images using the pipeline images = pipe(prompt=prompt + ', ' + a_prompt, num_inference_steps=ddim_steps, guidance_scale=scale, generator=generator, num_images_per_prompt=num_samples).images results = [np.array(image) for image in images] return results block = gr.Blocks().queue() with block: with gr.Row(): gr.Markdown("## Scene Diffusion with ControlNet") with gr.Row(): with gr.Column(): input_image = gr.Image(source='upload', type="numpy") prompt = gr.Textbox(label="Prompt") a_prompt = gr.Textbox(label="Additional Prompt") n_prompt = gr.Textbox(label="Negative Prompt") num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64) ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) guess_mode = gr.Checkbox(label='Guess Mode', value=False) strength = gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.5, step=0.1) scale = gr.Slider(label="Scale", minimum=0.1, maximum=30.0, value=10.0, step=0.1) seed = gr.Slider(label="Seed", minimum=0, maximum=10000, value=42, step=1) eta = gr.Slider(label="ETA", minimum=0.0, maximum=1.0, value=0.0, step=0.1) low_threshold = gr.Slider(label="Canny Low Threshold", minimum=1, maximum=255, value=100, step=1) high_threshold = gr.Slider(label="Canny High Threshold", minimum=1, maximum=255, value=200, step=1) submit = gr.Button("Generate") with gr.Column(): output_image = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') submit.click(fn=process, inputs=[input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, low_threshold, high_threshold], outputs=output_image) demo = block demo.launch(share=True)