import numpy as np # import gradio as gr import os import tempfile import shutil from trainer import Trainer def predict(input_text, model_type): if model_type in ['lstm', 'bilstm']: predicted_label = trainer.predict(input_text ) elif model_type == 'max_ent': predicted_label = trainer.predict_maxent(input_text) elif model_type == 'svm': predicted_label = trainer.predict_svm(input_text) return str(predicted_label) # pass def predict_omni(input_text, model_type): predicted_label_net = trainer.predict(input_text ) predicted_label_maxent = trainer_maxent.predict_maxent(input_text ) predicted_label_svm = trainer_svm.predict_svm(input_text ) # if model_type in ['lstm', 'bilstm']: # predicted_label = trainer.predict(input_text ) # elif model_type == 'max_ent': # predicted_label = trainer.predict_maxent(input_text) # elif model_type == 'svm': # predicted_label = trainer.predict_svm(input_text) predicted_text = f"LSTM: {predicted_label_net}, Max Ent: {predicted_label_maxent}, SVM: {predicted_label_svm}" return predicted_text # pass def create_demo(): USAGE = """## Text Classification """ with gr.Blocks() as demo: gr.Markdown(USAGE) # demo = # gr.Interface( # predict, # # gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3), # gr.File(type="filepath"), # gr.File(type="filepath"), # cache_examples=False # ) input_file = gr.File(type="filepath") output_file = gr.File(type="filepath") gr.Interface(fn=greet, inputs="textbox", outputs="textbox") # gr.Interface( # predict, # # gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3), # input_file, # output_file, # cache_examples=False # ) # inputs = input_file # outputs = output_file # gr.Examples( # examples=[os.path.join(os.path.dirname(__file__), "./gradio_inter/20231104_017.pkl")], # inputs=inputs, # fn=predict, # outputs=outputs, # ) return demo if __name__ == "__main__": vocab_size = 8000 sequence_len = 150 # batch_size = 1024 batch_size = 256 nn_epochs = 20 model_type = "lstm" # model_type = "bilstm" # model_type = "max_ent" # trainer = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type) # print(f"Trainer loaded") model_type = "lstm" trainer = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type) model_type = "max_ent" trainer_maxent = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type) model_type = "svm" trainer_svm = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type) while True: input_text = input() # if model_type in ["lstm", "bilstm"]: # label = predict(input_text, model_type) label = predict_omni(input_text, model_type) # elif model_type in ["max_ent"]: # label = print(label) # demo = create_demo() # demo.launch() # python app_local.py