# This code is based on https://github.com/openai/guided-diffusion """ Various utilities for neural networks. """ import math import torch as th import torch.nn as nn # PyTorch 1.7 has SiLU, but we support PyTorch 1.5. class SiLU(nn.Module): def forward(self, x): return x * th.sigmoid(x) class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def update_ema(target_params, source_params, rate=0.99): """ Update target parameters to be closer to those of source parameters using an exponential moving average. :param target_params: the target parameter sequence. :param source_params: the source parameter sequence. :param rate: the EMA rate (closer to 1 means slower). """ for targ, src in zip(target_params, source_params): targ.detach().mul_(rate).add_(src, alpha=1 - rate) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def sum_flat(tensor): """ Take the sum over all non-batch dimensions. """ return tensor.sum(dim=list(range(1, len(tensor.shape)))) def normalization(channels): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNorm32(32, channels) def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = th.exp( -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) if dim % 2: embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) return embedding def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: args = tuple(inputs) + tuple(params) return CheckpointFunction.apply(func, len(inputs), *args) else: return func(*inputs) class CheckpointFunction(th.autograd.Function): @staticmethod @th.cuda.amp.custom_fwd def forward(ctx, run_function, length, *args): ctx.run_function = run_function ctx.input_length = length ctx.save_for_backward(*args) with th.no_grad(): output_tensors = ctx.run_function(*args[:length]) return output_tensors @staticmethod @th.cuda.amp.custom_bwd def backward(ctx, *output_grads): args = list(ctx.saved_tensors) # Filter for inputs that require grad. If none, exit early. input_indices = [i for (i, x) in enumerate(args) if x.requires_grad] if not input_indices: return (None, None) + tuple(None for _ in args) with th.enable_grad(): for i in input_indices: if i < ctx.input_length: # Not sure why the OAI code does this little # dance. It might not be necessary. args[i] = args[i].detach().requires_grad_() args[i] = args[i].view_as(args[i]) output_tensors = ctx.run_function(*args[:ctx.input_length]) if isinstance(output_tensors, th.Tensor): output_tensors = [output_tensors] # Filter for outputs that require grad. If none, exit early. out_and_grads = [(o, g) for (o, g) in zip(output_tensors, output_grads) if o.requires_grad] if not out_and_grads: return (None, None) + tuple(None for _ in args) # Compute gradients on the filtered tensors. computed_grads = th.autograd.grad( [o for (o, g) in out_and_grads], [args[i] for i in input_indices], [g for (o, g) in out_and_grads] ) # Reassemble the complete gradient tuple. input_grads = [None for _ in args] for (i, g) in zip(input_indices, computed_grads): input_grads[i] = g return (None, None) + tuple(input_grads)