""" This script is a placeholder for training LLaMA from scratch. Currently, it just trains on the Shakespeare dataset. """ from pathlib import Path import sys import os import time from functools import partial from typing import Tuple import lightning as L from lightning.fabric.strategies import FSDPStrategy import torch from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy import numpy as np # support running without installing as a package wd = Path(__file__).parent.parent.resolve() sys.path.append(str(wd)) from lit_llama.model import Block, LLaMA, LLaMAConfig from lit_llama.utils import save_model_checkpoint out_dir = "out/training" eval_interval = 2000 eval_iters = 200 log_interval = 1 # compilation fails as it does not support torch.complex64 for RoPE # compile = False # Hyperparameters learning_rate = 6e-4 batch_size = 2 max_iters = 600000 weight_decay = 1e-1 beta1 = 0.9 beta2 = 0.95 grad_clip = 1.0 # For shakespeare, choose smaller block size than vanilla LLaMA block_size = 1024 def main() -> None: auto_wrap_policy = partial(transformer_auto_wrap_policy, transformer_layer_cls={Block}) strategy = FSDPStrategy(auto_wrap_policy=auto_wrap_policy, activation_checkpointing=Block, limit_all_gathers=True) fabric = L.Fabric(accelerator="cuda", devices=4, precision="bf16-mixed", strategy=strategy) fabric.launch() fabric.seed_everything(1337 + fabric.global_rank) if fabric.global_rank == 0: os.makedirs(out_dir, exist_ok=True) train_data, val_data = load_datasets() config = LLaMAConfig.from_name("7B") config.block_size = block_size config.vocab_size = 100 # from prepare_shakespeare.py with fabric.device: model = LLaMA(config) # if compile: # model = torch.compile(model) model = fabric.setup_module(model) optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas=(beta1, beta2), foreach=False) optimizer = fabric.setup_optimizers(optimizer) train(fabric, model, optimizer, train_data, val_data) def train( fabric: L.Fabric, model: torch.nn.Module, optimizer: torch.optim.Optimizer, train_data: np.ndarray, val_data: np.ndarray, ) -> None: """The training loop. Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT. """ iter_num = 0 while True: # TODO: add learning rate scheduling # evaluate the loss on train/val sets and write checkpoints if iter_num > 0 and iter_num % eval_interval == 0: val_loss = validate(fabric, model, val_data) fabric.print(f"step {iter_num}: val loss {val_loss:.4f}") fabric.print(f"Saving checkpoint to {out_dir}") save_model_checkpoint(fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth")) t0 = time.time() input_ids, targets = get_batch( fabric, train_data, block_size=model.config.block_size, # type: ignore[union-attr,arg-type] ) logits = model(input_ids) loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) fabric.backward(loss) # TODO: Gradient clipping # if grad_clip != 0.0: # fabric.clip_gradients(model, optimizer, max_norm=grad_clip) optimizer.step() optimizer.zero_grad() dt = time.time() - t0 if iter_num % log_interval == 0: fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms") iter_num += 1 if iter_num > max_iters: break @torch.no_grad() def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor: fabric.print("Validating ...") model.eval() losses = torch.zeros(eval_iters) for k in range(eval_iters): input_ids, targets = get_batch( fabric, val_data, block_size=model.config.block_size, # type: ignore[union-attr,arg-type] ) logits = model(input_ids) loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) losses[k] = loss.item() out = losses.mean() model.train() return out def get_batch(fabric: L.Fabric, data: np.ndarray, block_size: int) -> Tuple[torch.Tensor, torch.Tensor]: ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i in ix]) y = torch.stack([torch.from_numpy((data[i + 1 : i + 1 + block_size]).astype(np.int64)) for i in ix]) x, y = fabric.to_device((x.pin_memory(), y.pin_memory())) return x, y def load_datasets(data_dir: str = "data/shakespeare") -> Tuple[np.ndarray, np.ndarray]: train_data = np.memmap(os.path.join(data_dir, "train.bin"), dtype=np.uint16, mode="r") val_data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16, mode="r") return train_data, val_data if __name__ == "__main__": torch.set_float32_matmul_precision("high") main()