from dataclasses import asdict import pytest import sys import torch @pytest.mark.skipif(sys.platform == "win32", reason="EmptyInitOnDevice on CPU not working for Windows.") @pytest.mark.parametrize("model_size", ["7B", "13B", "30B", "65B"]) def test_config_identical(model_size, lit_llama): import lit_llama.adapter as llama_adapter import lit_llama.model as llama from lit_llama.utils import EmptyInitOnDevice llama_config = asdict(llama.LLaMAConfig.from_name(model_size)) adapter_config = asdict(llama_adapter.LLaMAConfig.from_name(model_size)) del adapter_config["adapter_prompt_length"] del adapter_config["adapter_start_layer"] assert adapter_config == llama_config with EmptyInitOnDevice(): llama_model = llama.LLaMA.from_name(model_size) adapter_model = llama_adapter.LLaMA.from_name(model_size) assert llama_model.lm_head.weight.shape == adapter_model.lm_head.weight.shape def test_adapter_load_gating_factor(lit_llama): """Tests backward-compatible loading of checkpoints after the `gating_factor` was extended per-head in PR #297. """ import lit_llama.adapter as llama_adapter from lit_llama.utils import lazy_load config = llama_adapter.LLaMAConfig(n_head=4, block_size=100, n_embd=16) attn = llama_adapter.CausalSelfAttention(config=config, block_idx=3) # Old checkpoint format state_dict={ "gating_factor": torch.tensor(0.42), # in old checkpoints, this was a scalar "c_attn.weight": torch.zeros(3 * 16, 16), "c_proj.weight": torch.zeros(16, 16), "adapter_wte.weight": torch.zeros(10, 16), } attn.load_state_dict(state_dict=state_dict) assert torch.equal(attn.gating_factor, torch.full((1, 4, 1, 1), 0.42)) # New checkpoint format state_dict={ "gating_factor": torch.tensor([0.42, 0.42, 0.42, 0.42]).reshape(1, 4, 1, 1), "c_attn.weight": torch.zeros(3 * 16, 16), "c_proj.weight": torch.zeros(16, 16), "adapter_wte.weight": torch.zeros(10, 16), } attn.load_state_dict(state_dict=state_dict) assert torch.equal(attn.gating_factor, torch.full((1, 4, 1, 1), 0.42))