import sys import time import warnings from pathlib import Path from typing import Optional import lightning as L import torch # support running without installing as a package wd = Path(__file__).parent.parent.resolve() sys.path.append(str(wd)) from lit_llama import LLaMA, Tokenizer from lit_llama.utils import lazy_load, llama_model_lookup, quantization @torch.no_grad() def generate( model: LLaMA, idx: torch.Tensor, max_new_tokens: int, *, max_seq_length: Optional[int] = None, temperature: float = 1.0, top_k: Optional[int] = None, eos_id: Optional[int] = None, ) -> torch.Tensor: """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. The implementation of this function is modified from A. Karpathy's nanoGPT. Args: model: The model to use. idx: Tensor of shape (T) with indices of the prompt sequence. max_new_tokens: The number of new tokens to generate. max_seq_length: The maximum sequence length allowed. temperature: Scales the predicted logits by 1 / temperature top_k: If specified, only sample among the tokens with the k highest probabilities eos_id: If specified, stop generating any more token once the token is triggered """ # create an empty tensor of the expected final shape and fill in the current tokens T = idx.size(0) T_new = T + max_new_tokens if max_seq_length is None: max_seq_length = min(T_new, model.config.block_size) device, dtype = idx.device, idx.dtype # create an empty tensor of the expected final shape and fill in the current tokens empty = torch.empty(T_new, dtype=dtype, device=device) empty[:T] = idx idx = empty input_pos = torch.arange(0, T, device=device) if idx.device.type == "xla": import torch_xla.core.xla_model as xm xm.mark_step() # generate max_new_tokens tokens for _ in range(max_new_tokens): x = idx.index_select(0, input_pos).view(1, -1) # forward logits = model(x, max_seq_length, input_pos) logits = logits[0, -1] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits = torch.where(logits < v[[-1]], -float("Inf"), logits) probs = torch.nn.functional.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype) # advance input_pos = input_pos[-1:] + 1 if idx.device.type == "xla": xm.mark_step() # concatenate the new generation idx = idx.index_copy(0, input_pos, idx_next) # if token is triggered, return the output (stop generation) if idx_next == eos_id: return idx[:input_pos] # include the EOS token return idx def main( prompt: str = "Hello, my name is", *, num_samples: int = 1, max_new_tokens: int = 50, top_k: int = 200, temperature: float = 0.8, checkpoint_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"), tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"), quantize: Optional[str] = None, ) -> None: """Generates text samples based on a pre-trained LLaMA model and tokenizer. Args: prompt: The prompt string to use for generating the samples. num_samples: The number of text samples to generate. max_new_tokens: The number of generation steps to take. top_k: The number of top most probable tokens to consider in the sampling process. temperature: A value controlling the randomness of the sampling process. Higher values result in more random samples. checkpoint_path: The checkpoint path to load. tokenizer_path: The tokenizer path to load. quantize: Whether to quantize the model and using which method: ``"llm.int8"``: LLM.int8() mode, ``"gptq.int4"``: GPTQ 4-bit mode. """ assert checkpoint_path.is_file(), checkpoint_path assert tokenizer_path.is_file(), tokenizer_path precision = "bf16-true" if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else "32-true" fabric = L.Fabric(devices=1, precision=precision) print("Loading model ...", file=sys.stderr) t0 = time.time() with lazy_load(checkpoint_path) as checkpoint: name = llama_model_lookup(checkpoint) with fabric.init_module(empty_init=True), quantization(mode=quantize): model = LLaMA.from_name(name) model.load_state_dict(checkpoint) print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr) model.eval() model = fabric.setup(model) tokenizer = Tokenizer(tokenizer_path) encoded = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device) prompt_length = encoded.size(0) L.seed_everything(1234) for i in range(num_samples): t0 = time.perf_counter() y = generate(model, encoded, max_new_tokens, temperature=temperature, top_k=top_k) t = time.perf_counter() - t0 model.reset_cache() print(tokenizer.decode(y)) tokens_generated = y.size(0) - prompt_length print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr) if fabric.device.type == "cuda": print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr) if __name__ == "__main__": from jsonargparse import CLI torch.set_float32_matmul_precision("high") warnings.filterwarnings( # Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31 "ignore", message="ComplexHalf support is experimental and many operators don't support it yet" ) warnings.filterwarnings( # Triggered in bitsandbytes/autograd/_functions.py:298 "ignore", message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization", ) CLI(main)