import numpy as np import matplotlib.pyplot as plt import matplotlib import seaborn as sns def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5): """Plot a set of images horizontally. Args: imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). titles: a list of strings, as titles for each image. cmaps: colormaps for monochrome images. """ n = len(imgs) if not isinstance(cmaps, (list, tuple)): cmaps = [cmaps] * n # figsize = (size*n, size*3/4) if size is not None else None figsize = (size * n, size * 6 / 5) if size is not None else None fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi) if n == 1: ax = [ax] for i in range(n): ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) ax[i].get_yaxis().set_ticks([]) ax[i].get_xaxis().set_ticks([]) ax[i].set_axis_off() for spine in ax[i].spines.values(): # remove frame spine.set_visible(False) if titles: ax[i].set_title(titles[i]) fig.tight_layout(pad=pad) return fig def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)): """Plot line matches for existing images with multiple colors. Args: lines: list of ndarrays of size (N, 2, 2). correct_matches: bool array of size (N,) indicating correct matches. lw: line width as float pixels. indices: indices of the images to draw the matches on. """ n_lines = len(lines[0]) colors = sns.color_palette("husl", n_colors=n_lines) np.random.shuffle(colors) alphas = np.ones(n_lines) # If correct_matches is not None, display wrong matches with a low alpha if correct_matches is not None: alphas[~np.array(correct_matches)] = 0.2 fig = plt.gcf() ax = fig.axes assert len(ax) > max(indices) axes = [ax[i] for i in indices] fig.canvas.draw() # Plot the lines for a, l in zip(axes, lines): # Transform the points into the figure coordinate system transFigure = fig.transFigure.inverted() endpoint0 = transFigure.transform(a.transData.transform(l[:, 0])) endpoint1 = transFigure.transform(a.transData.transform(l[:, 1])) fig.lines += [ matplotlib.lines.Line2D( (endpoint0[i, 0], endpoint1[i, 0]), (endpoint0[i, 1], endpoint1[i, 1]), zorder=1, transform=fig.transFigure, c=colors[i], alpha=alphas[i], linewidth=lw, ) for i in range(n_lines) ] return fig def make_matching_figure( img0, img1, mkpts0, mkpts1, color, titles=None, kpts0=None, kpts1=None, text=[], dpi=75, path=None, pad=0, ): # color = np.random.rand(len(mkpts0), 3) # draw image pair # assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}' fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) axes[0].imshow(img0) # , cmap='gray') axes[1].imshow(img1) # , cmap='gray') for i in range(2): # clear all frames axes[i].get_yaxis().set_ticks([]) axes[i].get_xaxis().set_ticks([]) for spine in axes[i].spines.values(): spine.set_visible(False) if titles is not None: axes[i].set_title(titles[i]) plt.tight_layout(pad=pad) if kpts0 is not None: assert kpts1 is not None axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5) axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5) # draw matches if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0: fig.canvas.draw() transFigure = fig.transFigure.inverted() fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0)) fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1)) fig.lines = [ matplotlib.lines.Line2D( (fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), transform=fig.transFigure, c='lime', # c=(233 / 255, 50 / 255, 35 / 255), linewidth=1, ) for i in range(len(mkpts0)) ] # freeze the axes to prevent the transform to change axes[0].autoscale(enable=False) axes[1].autoscale(enable=False) axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c='lime', s=4) axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c='lime', s=4) # put txts txt_color = "k" if img0[:100, :200].mean() > 200 else "w" fig.text( 0.01, 0.99, "\n".join(text), transform=fig.axes[0].transAxes, fontsize=15, va="top", ha="left", color=txt_color, ) # save or return figure if path: plt.savefig(str(path), bbox_inches="tight", pad_inches=0) plt.close() else: return fig def error_colormap(err, thr, alpha=1.0): assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}" x = 1 - np.clip(err / (thr * 2), 0, 1) return np.clip( np.stack( [2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1 ), 0, 1, ) np.random.seed(1995) color_map = np.arange(100) np.random.shuffle(color_map) def fig2im(fig): fig.canvas.draw() w, h = fig.canvas.get_width_height() buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1") im = buf_ndarray.reshape(h, w, 3) return im def draw_matches( mkpts0, mkpts1, img0, img1, conf, titles=None, dpi=150, path=None, pad=0.5 ): thr = 5e-4 thr = 0.5 color = error_colormap(conf, thr, alpha=0.1) text = [ f"image name", f"#Matches: {len(mkpts0)}", ] if path: fig2im( make_matching_figure( img0, img1, mkpts0, mkpts1, color, titles=titles, text=text, path=path, dpi=dpi, pad=pad, ) ) else: return fig2im( make_matching_figure( img0, img1, mkpts0, mkpts1, color, titles=titles, text=text, pad=pad, dpi=dpi, ) ) def draw_image_pairs(img0, img1, text=[], dpi=75, path=None, pad=0.5): # draw image pair fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi) axes[0].imshow(img0) # , cmap='gray') axes[1].imshow(img1) # , cmap='gray') for i in range(2): # clear all frames axes[i].get_yaxis().set_ticks([]) axes[i].get_xaxis().set_ticks([]) for spine in axes[i].spines.values(): spine.set_visible(False) plt.tight_layout(pad=pad) # put txts txt_color = "k" if img0[:100, :200].mean() > 200 else "w" fig.text( 0.01, 0.99, "\n".join(text), transform=fig.axes[0].transAxes, fontsize=15, va="top", ha="left", color=txt_color, ) # save or return figure if path: plt.savefig(str(path), bbox_inches="tight", pad_inches=0) plt.close() else: return fig2im(fig)