from curses import is_term_resized import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models from lanet_utils import image_grid class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv = nn.Sequential( nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ) def forward(self, x): return self.conv(x) class DilationConv3x3(nn.Module): def __init__(self, in_channels, out_channels): super(DilationConv3x3, self).__init__() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=2, dilation=2, bias=False, ) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv(x) x = self.bn(x) return x class InterestPointModule(nn.Module): def __init__(self, is_test=False): super(InterestPointModule, self).__init__() self.is_test = is_test model = models.vgg16_bn(pretrained=True) # use the first 23 layers as encoder self.encoder = nn.Sequential(*list(model.features.children())[:33]) # score head self.score_head = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1), ) self.softmax = nn.Softmax(dim=1) # location head self.loc_head = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), ) # location out self.loc_out = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1) self.shift_out = nn.Conv2d(256, 1, kernel_size=3, stride=1, padding=1) # descriptor out self.des_out2 = DilationConv3x3(128, 256) self.des_out3 = DilationConv3x3(256, 256) self.des_out4 = DilationConv3x3(512, 256) def forward(self, x): B, _, H, W = x.shape x = self.encoder[2](self.encoder[1](self.encoder[0](x))) x = self.encoder[5](self.encoder[4](self.encoder[3](x))) x = self.encoder[6](x) x = self.encoder[9](self.encoder[8](self.encoder[7](x))) x2 = self.encoder[12](self.encoder[11](self.encoder[10](x))) x = self.encoder[13](x2) x = self.encoder[16](self.encoder[15](self.encoder[14](x))) x = self.encoder[19](self.encoder[18](self.encoder[17](x))) x3 = self.encoder[22](self.encoder[21](self.encoder[20](x))) x = self.encoder[23](x3) x = self.encoder[26](self.encoder[25](self.encoder[24](x))) x = self.encoder[29](self.encoder[28](self.encoder[27](x))) x = self.encoder[32](self.encoder[31](self.encoder[30](x))) B, _, Hc, Wc = x.shape # score head score_x = self.score_head(x) aware = self.softmax(score_x[:, 0:3, :, :]) score = score_x[:, 3, :, :].unsqueeze(1).sigmoid() border_mask = torch.ones(B, Hc, Wc) border_mask[:, 0] = 0 border_mask[:, Hc - 1] = 0 border_mask[:, :, 0] = 0 border_mask[:, :, Wc - 1] = 0 border_mask = border_mask.unsqueeze(1) score = score * border_mask.to(score.device) # location head coord_x = self.loc_head(x) coord_cell = self.loc_out(coord_x).tanh() shift_ratio = self.shift_out(coord_x).sigmoid() * 2.0 step = ((H / Hc) - 1) / 2.0 center_base = ( image_grid( B, Hc, Wc, dtype=coord_cell.dtype, device=coord_cell.device, ones=False, normalized=False, ).mul(H / Hc) + step ) coord_un = center_base.add(coord_cell.mul(shift_ratio * step)) coord = coord_un.clone() coord[:, 0] = torch.clamp(coord_un[:, 0], min=0, max=W - 1) coord[:, 1] = torch.clamp(coord_un[:, 1], min=0, max=H - 1) # descriptor block desc_block = [] desc_block.append(self.des_out2(x2)) desc_block.append(self.des_out3(x3)) desc_block.append(self.des_out4(x)) desc_block.append(aware) if self.is_test: coord_norm = coord[:, :2].clone() coord_norm[:, 0] = (coord_norm[:, 0] / (float(W - 1) / 2.0)) - 1.0 coord_norm[:, 1] = (coord_norm[:, 1] / (float(H - 1) / 2.0)) - 1.0 coord_norm = coord_norm.permute(0, 2, 3, 1) desc2 = torch.nn.functional.grid_sample(desc_block[0], coord_norm) desc3 = torch.nn.functional.grid_sample(desc_block[1], coord_norm) desc4 = torch.nn.functional.grid_sample(desc_block[2], coord_norm) aware = desc_block[3] desc = ( torch.mul(desc2, aware[:, 0, :, :]) + torch.mul(desc3, aware[:, 1, :, :]) + torch.mul(desc4, aware[:, 2, :, :]) ) desc = desc.div( torch.unsqueeze(torch.norm(desc, p=2, dim=1), 1) ) # Divide by norm to normalize. return score, coord, desc return score, coord, desc_block class CorrespondenceModule(nn.Module): def __init__(self, match_type="dual_softmax"): super(CorrespondenceModule, self).__init__() self.match_type = match_type if self.match_type == "dual_softmax": self.temperature = 0.1 else: raise NotImplementedError() def forward(self, source_desc, target_desc): b, c, h, w = source_desc.size() source_desc = source_desc.div( torch.unsqueeze(torch.norm(source_desc, p=2, dim=1), 1) ).view(b, -1, h * w) target_desc = target_desc.div( torch.unsqueeze(torch.norm(target_desc, p=2, dim=1), 1) ).view(b, -1, h * w) if self.match_type == "dual_softmax": sim_mat = ( torch.einsum("bcm, bcn -> bmn", source_desc, target_desc) / self.temperature ) confidence_matrix = F.softmax(sim_mat, 1) * F.softmax(sim_mat, 2) else: raise NotImplementedError() return confidence_matrix