# coding=utf-8 # Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 DeBERTa-v2 model.""" from __future__ import annotations from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_deberta_v2 import DebertaV2Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DebertaV2Config" _CHECKPOINT_FOR_DOC = "kamalkraj/deberta-v2-xlarge" TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "kamalkraj/deberta-v2-xlarge", # See all DeBERTa models at https://huggingface.co/models?filter=deberta-v2 ] # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaContextPooler with Deberta->DebertaV2 class TFDebertaV2ContextPooler(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.pooler_hidden_size, name="dense") self.dropout = TFDebertaV2StableDropout(config.pooler_dropout, name="dropout") self.config = config def call(self, hidden_states, training: bool = False): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token, training=training) pooled_output = self.dense(context_token) pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output) return pooled_output @property def output_dim(self) -> int: return self.config.hidden_size # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaXSoftmax with Deberta->DebertaV2 class TFDebertaV2XSoftmax(tf.keras.layers.Layer): """ Masked Softmax which is optimized for saving memory Args: input (`tf.Tensor`): The input tensor that will apply softmax. mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis def call(self, inputs: tf.Tensor, mask: tf.Tensor): rmask = tf.logical_not(tf.cast(mask, tf.bool)) output = tf.where(rmask, float("-inf"), inputs) output = stable_softmax(output, self.axis) output = tf.where(rmask, 0.0, output) return output # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaStableDropout with Deberta->DebertaV2 class TFDebertaV2StableDropout(tf.keras.layers.Layer): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prob @tf.custom_gradient def xdropout(self, inputs): """ Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob. """ mask = tf.cast( 1 - tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)), tf.bool, ) scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32) if self.drop_prob > 0: inputs = tf.where(mask, 0.0, inputs) * scale def grad(upstream): if self.drop_prob > 0: return tf.where(mask, 0.0, upstream) * scale else: return upstream return inputs, grad def call(self, inputs: tf.Tensor, training: tf.Tensor = False): if training: return self.xdropout(inputs) return inputs # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaSelfOutput with Deberta->DebertaV2 class TFDebertaV2SelfOutput(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") def call(self, hidden_states, input_tensor, training: bool = False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaAttention with Deberta->DebertaV2 class TFDebertaV2Attention(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.self = TFDebertaV2DisentangledSelfAttention(config, name="self") self.dense_output = TFDebertaV2SelfOutput(config, name="output") self.config = config def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self( hidden_states=input_tensor, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) if query_states is None: query_states = input_tensor attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=query_states, training=training ) output = (attention_output,) + self_outputs[1:] return output # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaIntermediate with Deberta->DebertaV2 class TFDebertaV2Intermediate(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOutput with Deberta->DebertaV2 class TFDebertaV2Output(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLayer with Deberta->DebertaV2 class TFDebertaV2Layer(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.attention = TFDebertaV2Attention(config, name="attention") self.intermediate = TFDebertaV2Intermediate(config, name="intermediate") self.bert_output = TFDebertaV2Output(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class TFDebertaV2ConvLayer(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.kernel_size = getattr(config, "conv_kernel_size", 3) # groups = getattr(config, "conv_groups", 1) self.conv_act = get_tf_activation(getattr(config, "conv_act", "tanh")) self.padding = (self.kernel_size - 1) // 2 self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def build(self, input_shape): with tf.name_scope("conv"): self.conv_kernel = self.add_weight( name="kernel", shape=[self.kernel_size, self.config.hidden_size, self.config.hidden_size], initializer=get_initializer(self.config.initializer_range), ) self.conv_bias = self.add_weight( name="bias", shape=[self.config.hidden_size], initializer=tf.zeros_initializer() ) return super().build(input_shape) def call( self, hidden_states: tf.Tensor, residual_states: tf.Tensor, input_mask: tf.Tensor, training: bool = False ) -> tf.Tensor: out = tf.nn.conv2d( tf.expand_dims(hidden_states, 1), tf.expand_dims(self.conv_kernel, 0), strides=1, padding=[[0, 0], [0, 0], [self.padding, self.padding], [0, 0]], ) out = tf.squeeze(tf.nn.bias_add(out, self.conv_bias), 1) rmask = tf.cast(1 - input_mask, tf.bool) out = tf.where(tf.broadcast_to(tf.expand_dims(rmask, -1), shape_list(out)), 0.0, out) out = self.dropout(out, training=training) out = self.conv_act(out) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input) if input_mask is None: output_states = output else: if len(shape_list(input_mask)) != len(shape_list(layer_norm_input)): if len(shape_list(input_mask)) == 4: input_mask = tf.squeeze(tf.squeeze(input_mask, axis=1), axis=1) input_mask = tf.cast(tf.expand_dims(input_mask, axis=2), tf.float32) output_states = output * input_mask return output_states class TFDebertaV2Encoder(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.layer = [TFDebertaV2Layer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] self.relative_attention = getattr(config, "relative_attention", False) self.config = config if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) self.pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets * 2 self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.conv = TFDebertaV2ConvLayer(config, name="conv") if getattr(config, "conv_kernel_size", 0) > 0 else None def build(self, input_shape): if self.relative_attention: self.rel_embeddings = self.add_weight( name="rel_embeddings.weight", shape=[self.pos_ebd_size, self.config.hidden_size], initializer=get_initializer(self.config.initializer_range), ) return super().build(input_shape) def get_rel_embedding(self): rel_embeddings = self.rel_embeddings if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if len(shape_list(attention_mask)) <= 2: extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2) attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1) attention_mask = tf.cast(attention_mask, tf.uint8) elif len(shape_list(attention_mask)) == 3: attention_mask = tf.expand_dims(attention_mask, 1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2] relative_pos = build_relative_position( q, shape_list(hidden_states)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) return relative_pos def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if len(shape_list(attention_mask)) <= 2: input_mask = attention_mask else: input_mask = tf.cast(tf.math.reduce_sum(attention_mask, axis=-2) > 0, dtype=tf.uint8) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) layer_outputs = layer_module( hidden_states=next_kv, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) output_states = layer_outputs[0] if i == 0 and self.conv is not None: output_states = self.conv(hidden_states, output_states, input_mask) next_kv = output_states if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions ) def make_log_bucket_position(relative_pos, bucket_size, max_position): sign = tf.math.sign(relative_pos) mid = bucket_size // 2 abs_pos = tf.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, tf.math.abs(relative_pos)) log_pos = ( tf.math.ceil( tf.cast(tf.math.log(abs_pos / mid), tf.float32) / tf.math.log((max_position - 1) / mid) * (mid - 1) ) + mid ) bucket_pos = tf.cast( tf.where(abs_pos <= mid, tf.cast(relative_pos, tf.float32), log_pos * tf.cast(sign, tf.float32)), tf.int32 ) return bucket_pos def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1): """ Build relative position according to the query and key We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - P_k\\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position Return: `tf.Tensor`: A tensor with shape [1, query_size, key_size] """ q_ids = tf.range(query_size, dtype=tf.int32) k_ids = tf.range(key_size, dtype=tf.int32) rel_pos_ids = q_ids[:, None] - tf.tile(tf.expand_dims(k_ids, axis=0), [shape_list(q_ids)[0], 1]) if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0) return tf.cast(rel_pos_ids, tf.int64) def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): shapes = [ shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(query_layer)[2], shape_list(relative_pos)[-1], ] return tf.broadcast_to(c2p_pos, shapes) def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): shapes = [ shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(key_layer)[-2], shape_list(key_layer)[-2], ] return tf.broadcast_to(c2p_pos, shapes) def pos_dynamic_expand(pos_index, p2c_att, key_layer): shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]] return tf.broadcast_to(pos_index, shapes) def take_along_axis(x, indices): # Only a valid port of np.take_along_axis when the gather axis is -1 # TPU + gathers and reshapes don't go along well -- see https://github.com/huggingface/transformers/issues/18239 if isinstance(tf.distribute.get_strategy(), tf.distribute.TPUStrategy): # [B, S, P] -> [B, S, P, D] one_hot_indices = tf.one_hot(indices, depth=x.shape[-1], dtype=x.dtype) # if we ignore the first two dims, this is equivalent to multiplying a matrix (one hot) by a vector (x) # grossly abusing notation: [B, S, P, D] . [B, S, D] = [B, S, P] gathered = tf.einsum("ijkl,ijl->ijk", one_hot_indices, x) # GPUs, on the other hand, prefer gathers instead of large one-hot+matmuls else: gathered = tf.gather(x, indices, batch_dims=2) return gathered class TFDebertaV2DisentangledSelfAttention(tf.keras.layers.Layer): """ Disentangled self-attention module Parameters: config (`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaV2Config`] """ def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query_proj", use_bias=True, ) self.key_proj = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key_proj", use_bias=True, ) self.value_proj = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value_proj", use_bias=True, ) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="pos_dropout") if not self.share_att_key: if "c2p" in self.pos_att_type: self.pos_key_proj = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_proj", use_bias=True, ) if "p2c" in self.pos_att_type: self.pos_query_proj = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj", ) self.softmax = TFDebertaV2XSoftmax(axis=-1) self.dropout = TFDebertaV2StableDropout(config.attention_probs_dropout_prob, name="dropout") def transpose_for_scores(self, tensor: tf.Tensor, attention_heads: int) -> tf.Tensor: tensor_shape = shape_list(tensor) # In graph mode mode, we can't reshape with -1 as the final dimension if the first dimension (batch size) is None shape = tensor_shape[:-1] + [attention_heads, tensor_shape[-1] // attention_heads] # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=shape) tensor = tf.transpose(tensor, perm=[0, 2, 1, 3]) x_shape = shape_list(tensor) tensor = tf.reshape(tensor, shape=[-1, x_shape[-2], x_shape[-1]]) return tensor def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: """ Call the module Args: hidden_states (`tf.Tensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`tf.Tensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. return_att (`bool`, optional): Whether return the attention matrix. query_states (`tf.Tensor`, optional): The *Q* state in *Attention(Q,K,V)*. relative_pos (`tf.Tensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`tf.Tensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: query_states = hidden_states query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 scale = tf.math.sqrt(tf.cast(shape_list(query_layer)[-1] * scale_factor, tf.float32)) attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 2, 1]) / scale) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) if rel_att is not None: attention_scores = attention_scores + rel_att attention_scores = tf.reshape( attention_scores, (-1, self.num_attention_heads, shape_list(attention_scores)[-2], shape_list(attention_scores)[-1]), ) # bsz x height x length x dimension attention_probs = self.softmax(attention_scores, attention_mask) attention_probs = self.dropout(attention_probs, training=training) context_layer = tf.matmul( tf.reshape(attention_probs, [-1, shape_list(attention_probs)[-2], shape_list(attention_probs)[-1]]), value_layer, ) context_layer = tf.transpose( tf.reshape( context_layer, [-1, self.num_attention_heads, shape_list(context_layer)[-2], shape_list(context_layer)[-1]], ), [0, 2, 1, 3], ) # Set the final dimension here explicitly. # Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing # the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput # requires final input dimension to be defined context_layer_shape = shape_list(context_layer) new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = shape_list(query_layer)[-2] relative_pos = build_relative_position( q, shape_list(key_layer)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) shape_list_pos = shape_list(relative_pos) if len(shape_list_pos) == 2: relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0) elif len(shape_list_pos) == 3: relative_pos = tf.expand_dims(relative_pos, 1) # bsz x height x query x key elif len(shape_list_pos) != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}") att_span = self.pos_ebd_size rel_embeddings = tf.expand_dims( rel_embeddings[self.pos_ebd_size - att_span : self.pos_ebd_size + att_span, :], 0 ) if self.share_att_key: pos_query_layer = tf.tile( self.transpose_for_scores(self.query_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) pos_key_layer = tf.tile( self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) else: if "c2p" in self.pos_att_type: pos_key_layer = tf.tile( self.transpose_for_scores(self.pos_key_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type: pos_query_layer = tf.tile( self.transpose_for_scores(self.pos_query_proj(rel_embeddings), self.num_attention_heads), [shape_list(query_layer)[0] // self.num_attention_heads, 1, 1], ) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = tf.math.sqrt(tf.cast(shape_list(pos_key_layer)[-1] * scale_factor, tf.float32)) c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 2, 1])) c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = take_along_axis( c2p_att, tf.broadcast_to( tf.squeeze(c2p_pos, 0), [shape_list(query_layer)[0], shape_list(query_layer)[1], shape_list(relative_pos)[-1]], ), ) score += c2p_att / scale # position->content if "p2c" in self.pos_att_type: scale = tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, tf.float32)) if shape_list(key_layer)[-2] != shape_list(query_layer)[-2]: r_pos = build_relative_position( shape_list(key_layer)[-2], shape_list(key_layer)[-2], bucket_size=self.position_buckets, max_position=self.max_relative_positions, ) r_pos = tf.expand_dims(r_pos, 0) else: r_pos = relative_pos p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 2, 1])) p2c_att = tf.transpose( take_along_axis( p2c_att, tf.broadcast_to( tf.squeeze(p2c_pos, 0), [shape_list(query_layer)[0], shape_list(key_layer)[-2], shape_list(key_layer)[-2]], ), ), [0, 2, 1], ) score += p2c_att / scale return score # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaEmbeddings Deberta->DebertaV2 class TFDebertaV2Embeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.position_biased_input = getattr(config, "position_biased_input", True) self.initializer_range = config.initializer_range if self.embedding_size != config.hidden_size: self.embed_proj = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="embed_proj", use_bias=False, ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaV2StableDropout(config.hidden_dropout_prob, name="dropout") def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): if self.config.type_vocab_size > 0: self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) else: self.token_type_embeddings = None with tf.name_scope("position_embeddings"): if self.position_biased_input: self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) else: self.position_embeddings = None super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, mask: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) final_embeddings = inputs_embeds if self.position_biased_input: position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) final_embeddings += position_embeds if self.config.type_vocab_size > 0: token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings += token_type_embeds if self.embedding_size != self.hidden_size: final_embeddings = self.embed_proj(final_embeddings) final_embeddings = self.LayerNorm(final_embeddings) if mask is not None: if len(shape_list(mask)) != len(shape_list(final_embeddings)): if len(shape_list(mask)) == 4: mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1) mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32) final_embeddings = final_embeddings * mask final_embeddings = self.dropout(final_embeddings, training=training) return final_embeddings # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPredictionHeadTransform with Deberta->DebertaV2 class TFDebertaV2PredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.dense = tf.keras.layers.Dense( units=self.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaLMPredictionHead with Deberta->DebertaV2 class TFDebertaV2LMPredictionHead(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, input_embeddings: tf.keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.transform = TFDebertaV2PredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape: tf.TensorShape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self) -> tf.keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaOnlyMLMHead with Deberta->DebertaV2 class TFDebertaV2OnlyMLMHead(tf.keras.layers.Layer): def __init__(self, config: DebertaV2Config, input_embeddings: tf.keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFDebertaV2LMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaMainLayer with Deberta->DebertaV2 class TFDebertaV2MainLayer(tf.keras.layers.Layer): config_class = DebertaV2Config def __init__(self, config: DebertaV2Config, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFDebertaV2Embeddings(config, name="embeddings") self.encoder = TFDebertaV2Encoder(config, name="encoder") def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, mask=attention_mask, training=training, ) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaPreTrainedModel with Deberta->DebertaV2 class TFDebertaV2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DebertaV2Config base_model_prefix = "deberta" DEBERTA_START_DOCSTRING = r""" The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data. This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! Parameters: config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple. """ @add_start_docstrings( "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.", DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaModel with Deberta->DebertaV2 class TFDebertaV2Model(TFDebertaV2PreTrainedModel): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.deberta = TFDebertaV2MainLayer(config, name="deberta") @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForMaskedLM with Deberta->DebertaV2 class TFDebertaV2ForMaskedLM(TFDebertaV2PreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFDebertaV2ForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.mlm = TFDebertaV2OnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls") def get_lm_head(self) -> tf.keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForSequenceClassification with Deberta->DebertaV2 class TFDebertaV2ForSequenceClassification(TFDebertaV2PreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.pooler = TFDebertaV2ContextPooler(config, name="pooler") drop_out = getattr(config, "cls_dropout", None) drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out self.dropout = TFDebertaV2StableDropout(drop_out, name="cls_dropout") self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = self.pooler(sequence_output, training=training) pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForTokenClassification with Deberta->DebertaV2 class TFDebertaV2ForTokenClassification(TFDebertaV2PreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DEBERTA_START_DOCSTRING, ) # Copied from transformers.models.deberta.modeling_tf_deberta.TFDebertaForQuestionAnswering with Deberta->DebertaV2 class TFDebertaV2ForQuestionAnswering(TFDebertaV2PreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.qa_outputs = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DEBERTA_START_DOCSTRING, ) class TFDebertaV2ForMultipleChoice(TFDebertaV2PreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model # _keys_to_ignore_on_load_unexpected = [r"mlm___cls", r"nsp___cls", r"cls.predictions", r"cls.seq_relationship"] # _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config: DebertaV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.deberta = TFDebertaV2MainLayer(config, name="deberta") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) self.pooler = TFDebertaV2ContextPooler(config, name="pooler") self.classifier = tf.keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape(tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.deberta( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = self.pooler(sequence_output, training=training) pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )