"""
"""
import random
import config
from app_util import *
user_simulator_pre_doc = """\
You are a helpful assistant, and the agent acts as user.
"""
user_simulator_post_doc = """\
## How does it work?
There are maily two types of user simulator:
- prompt-based user-simulator (role-play)
- model-based user-simulator
This demo is a model-based user simulator.
"""
# In most cases, large language models (LLMs) are used to serve as assistant generator.
# Besides, it can also used as user simulator.
assistant_simulator_pre_doc = """\
You are a user, and the agent acts as assistant.
"""
assistant_simulator_post_doc = """\
"""
self_chat_pre_doc = """\
Self-chat is a demo which make the model talk to itself. Dual-agent.
"""
self_chat_post_doc = """\
## How does it work?
It is a combination of user simulator and response generator.
"""
survey = """\
## knowledge distillation 知识蒸馏
Essentially, it is a form of model compression.
## distilling knowledge != knowledge distillation
知识的形式可以是 QA纯文本,也可以是 QA+概率。
## 有不用概率的知识蒸馏吗?
"""
gr.set_static_paths(paths=["assets/"])
"""
"""
css="""
.image_center {
display: block;
margin: auto;
}
"""
with gr.Blocks(head=None, css=css) as demo:
# Knowledge Distillation through Self Chatting
# Distilling the Knowledge from LLM through Self Chatting
# Generating Synthetic Data through Self Chat
gr.HTML("""Generating Synthetic Data via Self-Chatting
""")
with gr.Row():
with gr.Column(scale=5):
system = gr.Dropdown(
choices=system_list,
# value=system_list[0],
allow_custom_value=True,
interactive=True,
label="System message",
scale=5,
)
chatbot = gr.Chatbot(show_copy_button=True,
show_share_button=True,
# avatar_images=("assets/man.png", "assets/bot.png"),
avatar_images=("assets/man.png", "assets/女客服.png"),
likeable=True)
# gr.Textbox("For faster inference, you can build locally with ")
# ss
with gr.Tab("Self Chat") as tab_dual_agent:
gr.Markdown(self_chat_pre_doc)
input_text_1 = gr.Textbox(show_label=False, placeholder="...", lines=10, visible=False)
generate_btn = gr.Button("🤖Self-Chat🤖", variant="primary")
with gr.Row():
retry_btn = gr.Button("🔄 Regenerate", variant="secondary", size="sm")
undo_btn = gr.Button("↩️ Undo", variant="secondary", size="sm")
# clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="sm")
clear_btn = gr.Button("🧹 Clear History", variant="secondary", size="sm")
gr.Markdown(self_chat_post_doc)
# 也叫 chat-assistant, 🎧,🤖 ,💁,
with gr.Tab("Response Generator") as tab_assistant_agent:
gr.Markdown(assistant_simulator_pre_doc)
with gr.Row():
# gr.HTML(
# value='',
# elem_classes=["image_center"]
# )
gr.Image("assets/man.png", interactive=False, show_download_button=False, width=40, height=40,
min_width=40,
show_share_button=False, show_fullscreen_button=False, container=False,
elem_classes=["image_center"])
input_text_2 = gr.Textbox(show_label=False, lines=2, placeholder="Please type user input",
container=False, scale=12)
generate_btn_2 = gr.Button("Send", variant="primary", min_width=80)
with gr.Row():
retry_btn_2 = gr.Button("🔄 Regenerate", variant="secondary", size="sm", )
undo_btn_2 = gr.Button("↩️ Undo", variant="secondary", size="sm", )
clear_btn_2 = gr.Button("🧹 Clear History", variant="secondary", size="sm")
gr.Markdown(assistant_simulator_post_doc)
#
with gr.Tab("User Simulator") as tab_user_agent: # 👨,🔊,
gr.Markdown(user_simulator_pre_doc)
with gr.Row():
# gr.HTML(value='')
# gr.Image("assets/女客服.jpg",
gr.Image("assets/女客服.png",
# gr.Image("assets/男客服.png",
interactive=False, show_download_button=False, width=40, height=40,
min_width=40,
show_share_button=False, show_fullscreen_button=False, container=False, elem_classes=["image_center"])
input_text_3 = gr.Textbox(show_label=False, lines=2, placeholder="Please type assistant response",
container=False, scale=12)
generate_btn_3 = gr.Button("Send", variant="primary", min_width=80)
with gr.Row():
retry_btn_3 = gr.Button("🔄 Regenerate", variant="secondary", size="sm")
undo_btn_3 = gr.Button("↩️ Undo", variant="secondary", size="sm")
# clear_btn_3 = gr.Button("🗑️ Clear", variant="secondary", size="sm")
clear_btn_3 = gr.Button("🧹 Clear History", variant="secondary", size="sm") # 🧹 Clear History (清除历史)
gr.Markdown(user_simulator_post_doc)
with gr.Column(variant="compact", scale=1, min_width=300):
# with gr.Column():
model = gr.Dropdown(
["Qwen2-0.5B-Instruct", "llama3.1", "gemini", "MiniCPM3-4B"],
value="Qwen2-0.5B-Instruct",
label="Model",
interactive=True,
# visible=False
)
with gr.Accordion(label="Parameters", open=True):
slider_max_new_tokens = gr.Slider(minimum=1, maximum=4096,
value=config.DEFAULT_MAX_NEW_TOKENS, step=1, label="Max New tokens")
slider_temperature = gr.Slider(minimum=0.1, maximum=10.0,
value=config.DEFAULT_TEMPERATURE, step=0.1, label="Temperature",
info="Larger temperature increase the randomness")
slider_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=config.DEFAULT_TOP_P,
step=0.05,
label="Top-p (nucleus sampling)",
)
slider_top_k = gr.Slider(
minimum=1,
maximum=200,
value=config.DEFAULT_TOP_K,
step=1,
label="Top-k",
)
# TODO: gr.State 不能通过API传参。
gr_false = gr.State(False)
history = gr.State([{"role": "system", "content": system_list[0]}]) # 有用信息只有个system,其他和chatbot内容重叠
system.change(reset_state, inputs=[system], outputs=[chatbot, history])
######## tab1: self-chat
generate_btn.click(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full")
retry_btn.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False) \
.then(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
undo_btn.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
clear_btn.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False)
######## tab2: response-generator
generate_btn_2.click(append_user_to_history, [input_text_2, chatbot, history], outputs=[chatbot, history],
show_api=False) \
.then(generate_assistant_message, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
retry_btn_2.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False) \
.then(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
undo_btn_2.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
clear_btn_2.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
.then(reset_user_input, outputs=[input_text_2], show_api=False)
tab_assistant_agent.select(generate_assistant_message, [chatbot, history, gr_false], outputs=[chatbot, history],
show_progress="full", show_api=False) # 点击tab,生成response (不warning)
######## tab3: user-simulator
generate_btn_3.click(append_assistant_to_history, [input_text_3, chatbot, history], outputs=[chatbot, history],
show_api=False) \
.then(generate_user_message, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
retry_btn_3.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False) \
.then(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
undo_btn_3.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
clear_btn_3.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
.then(reset_user_input, outputs=[input_text_3], show_api=False)
tab_user_agent.select(generate_user_message, [chatbot, history, gr_false], outputs=[chatbot, history],
show_progress="full", show_api=False) # 点击tab,生成user-input
slider_max_new_tokens.change(set_max_new_tokens, inputs=[slider_max_new_tokens])
slider_temperature.change(set_temperature, inputs=[slider_temperature])
slider_top_p.change(set_top_p, inputs=[slider_top_p])
slider_top_k.change(set_top_k, inputs=[slider_top_k])
demo.load(lambda: gr.update(value=random.choice(system_list)), None, system, show_api=False)
# demo.queue().launch(share=False, server_name="0.0.0.0", debug=True)
# demo.queue().launch(concurrency_count=1, max_size=5)
demo.queue().launch()