"""
"""
import random
import gradio
import config
from app_util import *
user_simulator_doc = """\
The agent acts as user simulator.
There are maily two types of user simulator:
- prompt-based user-simulator (role-play)
- model-based user-simulator
This demo is a model-based user simulator.
"""
# In most cases, large language models (LLMs) are used to serve as assistant generator.
# Besides, it can also used as user simulator.
assistant_simulator_doc = """\
The agent acts as assistant simulator.
"""
self_chat_doc = """\
Self-chat is a demo which make the model talk to itself.
It is a combination of user simulator and response generator.
"""
survey = """\
## knowledge distillation 知识蒸馏
Essentially, it is a form of model compression.
## distilling knowledge != knowledge distillation
知识的形式可以是 QA纯文本,也可以是 QA+概率。
## 有不用概率的知识蒸馏吗?
"""
with gr.Blocks(head=None) as demo:
# Knowledge Distillation through Self Chatting
# Distilling the Knowledge from LLM through Self Chatting
# Generating Synthetic Data through Self Chat
gr.HTML("""
Generating Synthetic Data via Self-Chat
""")
with gr.Row():
with gr.Column(scale=5):
system = gr.Dropdown(
choices=system_list,
# value=system_list[0],
allow_custom_value=True,
interactive=True,
label="System message",
scale=5,
)
chatbot = gr.Chatbot(show_copy_button=True,
show_share_button=True,
avatar_images=("assets/man.png", "assets/bot.png"),
likeable=True)
# gr.Textbox("For faster inference, you can build locally with ")
# ss
with gradio.Tab("Self Chat"):
input_text_1 = gr.Textbox(show_label=False, placeholder="...", lines=10, visible=False)
generate_btn = gr.Button("🤔️ Self-Chat", variant="primary")
with gr.Row():
retry_btn = gr.Button("🔄 Regenerate", variant="secondary", size="sm", )
undo_btn = gr.Button("↩️ Undo", variant="secondary", size="sm", )
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="sm", ) # 🧹 Clear History (清除历史)
# stop_btn = gr.Button("停止生成", variant="stop", visible=False)
gr.Markdown(self_chat_doc)
# 也叫 chat-assistant,
with gradio.Tab("Response Generator"):
with gr.Row():
input_text_2 = gr.Textbox(show_label=False, placeholder="Please type user input", scale=7)
generate_btn_2 = gr.Button("Send", variant="primary")
with gr.Row():
retry_btn_2 = gr.Button("🔄 Regenerate", variant="secondary", size="sm", )
undo_btn_2 = gr.Button("↩️ Undo", variant="secondary", size="sm", )
clear_btn_2 = gr.Button("🗑️ Clear", variant="secondary", size="sm", ) # 🧹 Clear History (清除历史)
gr.Markdown(assistant_simulator_doc)
#
with gradio.Tab("User Simulator"):
with gr.Row():
input_text_3 = gr.Textbox(show_label=False, placeholder="Please type assistant response", scale=7)
generate_btn_3 = gr.Button("Send", variant="primary")
with gr.Row():
retry_btn_3 = gr.Button("🔄 Regenerate", variant="secondary", size="sm", )
undo_btn_3 = gr.Button("↩️ Undo", variant="secondary", size="sm", )
clear_btn_3 = gr.Button("🗑️ Clear", variant="secondary", size="sm", ) # 🧹 Clear History (清除历史)
gr.Markdown(user_simulator_doc)
with gr.Column(variant="compact", scale=1, min_width=300):
# with gr.Column():
model = gr.Dropdown(
["Qwen2-0.5B-Instruct", "llama3.1", "gemini"],
value="Qwen2-0.5B-Instruct",
label="Model",
interactive=True,
# visible=False
)
with gr.Accordion(label="Parameters", open=True):
slider_max_new_tokens = gr.Slider(minimum=1, maximum=4096,
value=config.DEFAULT_MAX_NEW_TOKENS, step=1, label="Max New tokens")
slider_temperature = gr.Slider(minimum=0.1, maximum=10.0,
value=config.DEFAULT_TEMPERATURE, step=0.1, label="Temperature",
info="Larger temperature increase the randomness")
slider_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=config.DEFAULT_TOP_P,
step=0.05,
label="Top-p (nucleus sampling)",
)
slider_top_k = gr.Slider(
minimum=1,
maximum=200,
value=config.DEFAULT_TOP_K,
step=1,
label="Top-k",
)
# TODO: gr.State 不能通过API传参。
history = gr.State([{"role": "system", "content": system_list[0]}]) # 有用信息只有个system,其他和chatbot内容重叠
system.change(reset_state, inputs=[system], outputs=[chatbot, history])
######## tab1: self-chat
generate_btn.click(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full")
retry_btn.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False) \
.then(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
undo_btn.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
clear_btn.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False)
######## tab2: response-generator
generate_btn_2.click(append_user_to_history, [input_text_2, chatbot, history], outputs=[chatbot, history],
show_api=False) \
.then(generate_assistant_message, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
retry_btn_2.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False) \
.then(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
undo_btn_2.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
clear_btn_2.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
.then(reset_user_input, outputs=[input_text_2], show_api=False)
######## tab3: user-simulator
generate_btn_3.click(append_assistant_to_history, [input_text_3, chatbot, history], outputs=[chatbot, history],
show_api=False) \
.then(generate_user_message, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
retry_btn_3.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False) \
.then(chat, [chatbot, history], outputs=[chatbot, history],
show_progress="full", show_api=False)
undo_btn_3.click(undo_generate, [chatbot, history], outputs=[chatbot, history], show_api=False)
clear_btn_3.click(reset_state, inputs=[system], outputs=[chatbot, history], show_api=False) \
.then(reset_user_input, outputs=[input_text_3], show_api=False)
slider_max_new_tokens.change(set_max_new_tokens, inputs=[slider_max_new_tokens])
slider_temperature.change(set_temperature, inputs=[slider_temperature])
slider_top_p.change(set_top_p, inputs=[slider_top_p])
slider_top_k.change(set_top_k, inputs=[slider_top_k])
demo.load(lambda: gr.update(value=random.choice(system_list)), None, system, show_api=False)
# demo.queue().launch(share=False, server_name="0.0.0.0", debug=True)
# demo.queue().launch(concurrency_count=1, max_size=5)
demo.queue().launch()