""" https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/local.py https://github.com/awinml/llama-cpp-python-bindings python convert_hf_to_gguf.py --outtype f16 Qwen1.5-0.5B-Chat python convert_hf_to_gguf.py /workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct/ ./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "I believe the meaning of life is" -n 128 ./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -f prompt.txt -n 128 ./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "You are a helpful assistant" -cnv ## reference - https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/llms/llamacpp.py - https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/server.py - https://github.com/abetlen/llama-cpp-python/blob/main/llama_cpp/server/app.py """ import json import copy import os from models.base_model import Simulator import llama_cpp # import llama_cpp.llama_tokenizer from transformers import AutoTokenizer from utils.logging_util import logger import config class Qwen2Simulator(Simulator): def __init__(self): local_path = "/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct-GGUF/qwen2-0_5b-instruct-fp16.gguf" if os.path.exists(local_path): self.hf_tokenizer = AutoTokenizer.from_pretrained( "/workspace/xusong/huggingface/models/Qwen2-0.5B-Instruct/") self.llm = llama_cpp.Llama( # n_ctx, n_threads model_path=local_path, # 默认的tokenizer有bug,tokenize后的id不同 tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer), n_ctx=config.MAX_SEQUENCE_LENGTH, # # n_threads=None, # 默认会根据cpu数来设置 n_threads # use_mlock=True, verbose=True, ) else: self.hf_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") self.llm = llama_cpp.Llama.from_pretrained( repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF", tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer), filename="*fp16.gguf", n_ctx=config.MAX_SEQUENCE_LENGTH, # use_mlock=True, verbose=True, ) logger.info(f"llm has been initialized: {self.llm}, " f"n_threads={self.llm.n_threads}, n_ctx={self.llm.n_ctx}, " f"env[CACHE]={os.environ.get('CACHE', None)}") self.generation_kwargs = dict( temperature=config.DEFAULT_TEMPERATURE, top_p=config.DEFAULT_TOP_P, top_k=config.DEFAULT_TOP_K, max_tokens=config.DEFAULT_MAX_TOKENS, repeat_penalty=1.1, # qwen2-0.5b-chat 有时内容生成结束没有<|im_end|>,直接跟 <|im_start|> stop=[ "<|im_end|>", "<|im_start|>", "<|endoftext|>", ], ) def tokenize(self, text): return self.llm.tokenize(text.encode("utf-8")) def generate(self, history, stream=True): if history[-1]['role'] in ["user"]: start_tokens = self.tokenize("<|im_start|>assistant\n") elif history[-1]['role'] in ["assistant", "system"]: start_tokens = self.tokenize("<|im_start|>user\n") input_ids = [] for message in history: if "tokens" not in message: message["tokens"] = self.tokenize(message["content"]) input_ids += self.tokenize(f"<|im_start|>{message['role']}\n") \ + message["tokens"] \ + self.tokenize("<|im_end|>\n") input_ids += start_tokens if stream: return self._stream_generate(input_ids) else: return self._generate(input_ids) def _stream_generate(self, input_ids): logger.info(f"generation_kwargs {self.generation_kwargs}") # self.llm.generate .set_cache .last_n_tokens_size .reset .ctx ._ctx output = self.llm.create_completion( input_ids, stream=True, **self.generation_kwargs ) # TODO: 检测finish reason,如果是length,则shift,并继续生成。 # TODO: 返回 token_id, for out in output: stream = copy.deepcopy(out) if stream["choices"][0]["finish_reason"] is None: yield stream["choices"][0]["completion_text"], stream["choices"][0]["completion_tokens"] else: print(f'finish with text: {stream["choices"][0]["completion_text"]}, tokens: {stream["choices"][0]["completion_tokens"]}') bot = Qwen2Simulator() if __name__ == "__main__": messages = [{"role": "system", "content": "你是一个导游。"}] generated_tokens = None print("######## requesting", messages) for generated_text, generated_tokens in bot.generate(messages, stream=True): print(generated_text, generated_tokens) for i in range(3): messages.append({"role": "user" if i % 2 == 0 else "assistant", "content": generated_text, "tokens": generated_tokens}) print("######## requesting", messages) for generated_text, generated_tokens in bot.generate(messages, stream=True): pass # print(generated_text, all_tokens)