import streamlit as st from PIL import Image from transformers import pipeline import pandas as pd import matplotlib.pyplot as plt # Disable PyplotGlobalUseWarning st.set_option('deprecation.showPyplotGlobalUse', False) # Create an image classification pipeline with scores pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None) # Streamlit app st.title("Emotion Recognition with vit-face-expression") # Upload images uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True) # Store selected file names selected_file_names = [] # Display thumbnail images alongside file names and sizes in the sidebar selected_images = [] if uploaded_images: # Add a "Select All" checkbox in the sidebar select_all = st.sidebar.checkbox("Select All", False) for idx, img in enumerate(uploaded_images): image = Image.open(img) checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox # Display thumbnail image and checkbox in sidebar st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40) #selected = st.sidebar.checkbox(f"Select {img.name}", value=False, key=checkbox_key) # If "Select All" is checked, all individual checkboxes are selected selected = st.sidebar.checkbox(f"Select {img.name}", value=select_all, key=checkbox_key) if selected: selected_images.append(image) selected_file_names.append(img.name) if st.button("Predict Emotions") and selected_images: emotions = [] if len(selected_images) == 2: # Predict emotion for each selected image using the pipeline results = [pipe(image) for image in selected_images] # Display images and predicted emotions side by side col1, col2 = st.columns(2) for i in range(2): predicted_class = results[i][0]["label"] predicted_emotion = predicted_class.split("_")[-1].capitalize() emotions.append(predicted_emotion) col = col1 if i == 0 else col2 col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}") # Use the index to get the corresponding filename col.write(f"Original File Name: {selected_file_names[i]}") # Display the keys and values of all results st.write("Keys and Values of all results:") col1, col2 = st.columns(2) for i, result in enumerate(results): col = col1 if i == 0 else col2 col.write(f"Keys and Values of results[{i}]:") for res in result: label = res["label"] score = res["score"] col.write(f"{label}: {score:.4f}") else: # Predict emotion for each selected image using the pipeline results = [pipe(image) for image in selected_images] # Display images and predicted emotions for i, (image, result) in enumerate(zip(selected_images, results)): predicted_class = result[0]["label"] predicted_emotion = predicted_class.split("_")[-1].capitalize() emotions.append(predicted_emotion) st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True) st.write(f"Emotion Scores for #{i+1} Image") st.write(f"{predicted_emotion}: {result[0]['score']:.4f}") # Use the index to get the corresponding filename st.write(f"Original File Name: {selected_file_names[i] if i < len(selected_file_names) else 'Unknown'}") # Calculate emotion statistics emotion_counts = pd.Series(emotions).value_counts() # Define a color map that matches the emotions to specific colors color_map = { 'Neutral': '#B38B6D', # Taupe 'Happy': '#FFFF00', # Yellow 'Sad': '#0000FF', # Blue 'Angry': '#FF0000', # Red 'Disgust': '#008000', # Green 'Surprise': '#FFA500', # Orange (Bright) 'Fear': '#000000' # Black # Add more emotions and their corresponding colors here } # Calculate the total number of faces analyzed total_faces = len(selected_images) # Use the color map to assign colors to the pie chart pie_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found # Plot pie chart with total faces in the title st.write("Emotion Distribution (Pie Chart):") fig_pie, ax_pie = plt.subplots() #font color ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors, textprops={'color': 'white', 'weight': 'bold'}) ax_pie.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140, colors=pie_colors) ax_pie.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. # Add total faces to the title ax_pie.set_title(f"Total Faces Analyzed: {total_faces}") st.pyplot(fig_pie) # Use the same color map for the bar chart bar_colors = [color_map.get(emotion, '#999999') for emotion in emotion_counts.index] # Default to grey if not found # Plot bar chart with total faces in the title st.write("Emotion Distribution (Bar Chart):") fig_bar, ax_bar = plt.subplots() emotion_counts.plot(kind='bar', color=bar_colors, ax=ax_bar) ax_bar.set_xlabel('Emotion') ax_bar.set_ylabel('Count') # Add total faces to the title ax_bar.set_title(f"Emotion Distribution - Total Faces Analyzed: {total_faces}") ax_bar.yaxis.set_major_locator(plt.MaxNLocator(integer=True)) # Ensure integer ticks on Y-axis # Display bar values as integers for i in ax_bar.patches: ax_bar.text(i.get_x() + i.get_width() / 2, i.get_height() + 0.1, int(i.get_height()), ha='center', va='bottom') st.pyplot(fig_bar)