import os import pytest import torch import open_clip import util_test os.environ['CUDA_VISIBLE_DEVICES'] = '' if hasattr(torch._C, '_jit_set_profiling_executor'): # legacy executor is too slow to compile large models for unit tests # no need for the fusion performance here torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(False) models_to_test = set(open_clip.list_models()) # testing excemptions models_to_test = models_to_test.difference({ # not available with timm yet # see https://github.com/mlfoundations/open_clip/issues/219 'convnext_xlarge', 'convnext_xxlarge', 'convnext_xxlarge_320', 'vit_medium_patch16_gap_256', # exceeds GH runner memory limit 'ViT-bigG-14', 'ViT-e-14', 'mt5-xl-ViT-H-14', 'coca_base', 'coca_ViT-B-32', 'coca_roberta-ViT-B-32' }) if 'OPEN_CLIP_TEST_REG_MODELS' in os.environ: external_model_list = os.environ['OPEN_CLIP_TEST_REG_MODELS'] with open(external_model_list, 'r') as f: models_to_test = set(f.read().splitlines()).intersection(models_to_test) print(f"Selected models from {external_model_list}: {models_to_test}") # TODO: add "coca_ViT-B-32" onece https://github.com/pytorch/pytorch/issues/92073 gets fixed models_to_test = list(models_to_test) models_to_test.sort() models_to_test = [(model_name, False) for model_name in models_to_test] models_to_jit_test = {"ViT-B-32"} models_to_jit_test = list(models_to_jit_test) models_to_jit_test = [(model_name, True) for model_name in models_to_jit_test] models_to_test_fully = models_to_test + models_to_jit_test @pytest.mark.regression_test @pytest.mark.parametrize("model_name,jit", models_to_test_fully) def test_inference_with_data( model_name, jit, pretrained = None, pretrained_hf = False, precision = 'fp32', force_quick_gelu = False, ): util_test.seed_all() model, _, preprocess_val = open_clip.create_model_and_transforms( model_name, pretrained = pretrained, precision = precision, jit = jit, force_quick_gelu = force_quick_gelu, pretrained_hf = pretrained_hf ) model_id = f'{model_name}_{pretrained or pretrained_hf}_{precision}' input_dir, output_dir = util_test.get_data_dirs() # text input_text_path = os.path.join(input_dir, 'random_text.pt') gt_text_path = os.path.join(output_dir, f'{model_id}_random_text.pt') if not os.path.isfile(input_text_path): pytest.skip(reason = f"missing test data, expected at {input_text_path}") if not os.path.isfile(gt_text_path): pytest.skip(reason = f"missing test data, expected at {gt_text_path}") input_text = torch.load(input_text_path) gt_text = torch.load(gt_text_path) y_text = util_test.inference_text(model, model_name, input_text) assert (y_text == gt_text).all(), f"text output differs @ {input_text_path}" # image image_size = model.visual.image_size if not isinstance(image_size, tuple): image_size = (image_size, image_size) input_image_path = os.path.join(input_dir, f'random_image_{image_size[0]}_{image_size[1]}.pt') gt_image_path = os.path.join(output_dir, f'{model_id}_random_image.pt') if not os.path.isfile(input_image_path): pytest.skip(reason = f"missing test data, expected at {input_image_path}") if not os.path.isfile(gt_image_path): pytest.skip(reason = f"missing test data, expected at {gt_image_path}") input_image = torch.load(input_image_path) gt_image = torch.load(gt_image_path) y_image = util_test.inference_image(model, preprocess_val, input_image) assert (y_image == gt_image).all(), f"image output differs @ {input_image_path}" if not jit: model.eval() model_out = util_test.forward_model(model, model_name, preprocess_val, input_image, input_text) if type(model) not in [open_clip.CLIP, open_clip.CustomTextCLIP]: assert type(model_out) == dict else: model.output_dict = True model_out_dict = util_test.forward_model(model, model_name, preprocess_val, input_image, input_text) assert (model_out_dict["image_features"] == model_out[0]).all() assert (model_out_dict["text_features"] == model_out[1]).all() assert (model_out_dict["logit_scale"] == model_out[2]).all() model.output_dict = None else: model, _, preprocess_val = open_clip.create_model_and_transforms( model_name, pretrained = pretrained, precision = precision, jit = False, force_quick_gelu = force_quick_gelu, pretrained_hf = pretrained_hf ) test_model = util_test.TestWrapper(model, model_name, output_dict=False) test_model = torch.jit.script(test_model) model_out = util_test.forward_model(test_model, model_name, preprocess_val, input_image, input_text) assert model_out["test_output"].shape[-1] == 2 test_model = util_test.TestWrapper(model, model_name, output_dict=True) test_model = torch.jit.script(test_model) model_out = util_test.forward_model(test_model, model_name, preprocess_val, input_image, input_text) assert model_out["test_output"].shape[-1] == 2