import argparse import ast def get_default_params(model_name): # Params from paper (https://arxiv.org/pdf/2103.00020.pdf) model_name = model_name.lower() if "vit" in model_name: return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.98, "eps": 1.0e-6} else: return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.999, "eps": 1.0e-8} class ParseKwargs(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): kw = {} for value in values: key, value = value.split('=') try: kw[key] = ast.literal_eval(value) except ValueError: kw[key] = str(value) # fallback to string (avoid need to escape on command line) setattr(namespace, self.dest, kw) def parse_args(args): parser = argparse.ArgumentParser() parser.add_argument( "--exp-name", type=str, help="the name of experiment", ) parser.add_argument( "--no-text-condition", action='store_true', help="whether to use text condition", ) parser.add_argument( "--train-data", type=str, default=None, help="Path to file(s) with training data. When using webdataset, multiple datasources can be combined using the `::` separator.", nargs='+', ) parser.add_argument( "--train-data-sample-ratio", type=float, default=[1.0], help="When using multiple data sources, this controls the sample ratio. ", nargs='+', ) parser.add_argument( "--train-data-upsampling-factors", type=str, default=None, help=( "When using multiple data sources with webdataset and sampling with replacement, this can be used to upsample specific data sources. " "Similar to --train-data, this should be a string with as many numbers as there are data sources, separated by `::` (e.g. 1::2::0.5) " "By default, datapoints are sampled uniformly regardless of the dataset sizes." ) ) parser.add_argument( "--ignore-in-train", type=int, default=[0], help=( "Whether Ignore coresponding dataset during training" ),nargs='+' ) parser.add_argument( "--ignore-in-val", type=int, default=[0], help=( "Whether Ignore coresponding dataset during val" ),nargs='+' ) parser parser.add_argument( "--extra-train-data", type=str, default=None, help="Path to file(s) with training data", ) parser.add_argument( "--val-data", type=str, default=[None], nargs='+', help="Path to file(s) with validation data", ) parser.add_argument( "--extra-val-data", type=str, default=None, help="Path to file(s) with validation data", ) parser.add_argument( "--train-folder", type=str, default=None, help="Path to images of training data", nargs='+', ) parser.add_argument( "--extra-train-folder", type=str, default=None, help="Path to images of training data", ) parser.add_argument( "--val-folder", type=str, default=[None], nargs='+', help="Path to images of val data", ) parser.add_argument( "--extra-val-folder", type=str, default=None, help="Path to images of val data", ) parser.add_argument( "--save-path", type=str, default=None, help="Path to save checkpoints", ) parser.add_argument( "--train-num-samples", type=int, default=None, help="Number of samples in dataset. Required for webdataset if not available in info file.", ) parser.add_argument( "--val-num-samples", type=int, default=None, help="Number of samples in dataset. Useful for webdataset if not available in info file.", ) parser.add_argument( "--dataset-type", choices=["webdataset", "csv", "synthetic", "auto", "preference", "rating", "regional", "ranking", "ImageReward", "HPD"], default="auto", help="Which type of dataset to process.", nargs='+' ) parser.add_argument( "--dataset-resampled", default=False, action="store_true", help="Whether to use sampling with replacement for webdataset shard selection." ) parser.add_argument( "--csv-separator", type=str, default="\t", help="For csv-like datasets, which separator to use." ) parser.add_argument( "--csv-img-key", type=str, default="filepath", help="For csv-like datasets, the name of the key for the image paths." ) parser.add_argument( "--csv-caption-key", type=str, default="title", help="For csv-like datasets, the name of the key for the captions." ) parser.add_argument( "--imagenet-val", type=str, default=None, help="Path to imagenet val set for conducting zero shot evaluation.", ) parser.add_argument( "--imagenet-v2", type=str, default=None, help="Path to imagenet v2 for conducting zero shot evaluation.", ) parser.add_argument( "--logs", type=str, default="./logs/", help="Where to store tensorboard logs. Use None to avoid storing logs.", ) parser.add_argument( "--log-local", action="store_true", default=False, help="log files on local master, otherwise global master only.", ) parser.add_argument( "--name", type=str, default=None, help="Optional identifier for the experiment when storing logs. Otherwise use current time.", ) parser.add_argument( "--workers", type=int, default=1, help="Number of dataloader workers per GPU.", nargs='+' ) parser.add_argument( "--batch-size", type=int, default=64, help="Batch size per GPU.", nargs='+' ) parser.add_argument( "--val-batch-size", type=int, default=64, help="Batch size per GPU.", nargs='+' ) parser.add_argument( "--iterations", type=int, default=None, help="Number of iterations to train for." ) parser.add_argument( "--iters-cooldown", type=int, default=None ) parser.add_argument("--lr", type=float, default=None, help="Learning rate.") parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.") parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.") parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.") parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.") parser.add_argument( "--warmup", type=int, default=10000, help="Number of steps to warmup for." ) parser.add_argument( "--use-bn-sync", default=False, action="store_true", help="Whether to use batch norm sync.") parser.add_argument( "--skip-scheduler", action="store_true", default=False, help="Use this flag to skip the learning rate decay.", ) parser.add_argument( "--lr-scheduler", type=str, default='cosine', help="LR scheduler. One of: 'cosine', 'const' (constant), 'const-cooldown' (constant w/ cooldown). Default: cosine", ) parser.add_argument( "--lr-cooldown-end", type=float, default=0.0, help="End learning rate for cooldown schedule. Default: 0" ) parser.add_argument( "--lr-cooldown-power", type=float, default=1.0, help="Power for polynomial cooldown schedule. Default: 1.0 (linear decay)" ) parser.add_argument( "--save-most-recent", action="store_true", default=False, help="Always save the most recent model trained to epoch_latest.pt.", ) parser.add_argument( "--zeroshot-frequency", type=int, default=2, help="How often to run zero shot." ) parser.add_argument( "--resume", default=None, type=str, help="path to latest checkpoint (default: none)", ) parser.add_argument( "--precision", choices=["amp", "amp_bf16", "amp_bfloat16", "bf16", "fp16", "fp32"], default="amp", help="Floating point precision." ) parser.add_argument( "--model", type=str, default="RN50", help="Name of the vision backbone to use.", ) parser.add_argument( "--pretrained", default='', type=str, help="Use a pretrained CLIP model weights with the specified tag or file path.", ) parser.add_argument( "--pretrained-image", default=False, action='store_true', help="Load imagenet pretrained weights for image tower backbone if available.", ) parser.add_argument( "--lock-image", default=False, action='store_true', help="Lock full image tower by disabling gradients.", ) parser.add_argument( "--lock-image-unlocked-groups", type=int, default=0, help="Leave last n image tower layer groups unlocked.", ) parser.add_argument( "--lock-image-freeze-bn-stats", default=False, action='store_true', help="Freeze BatchNorm running stats in image tower for any locked layers.", ) parser.add_argument( '--image-mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override default image mean value of dataset') parser.add_argument( '--image-std', type=float, nargs='+', default=None, metavar='STD', help='Override default image std deviation of of dataset') parser.add_argument('--aug-cfg', nargs='*', default={}, action=ParseKwargs) parser.add_argument( '--light-augmentation', action='store_true', help='') parser.add_argument( "--grad-checkpointing", default=False, action='store_true', help="Enable gradient checkpointing.", ) parser.add_argument( "--local-loss", default=False, action="store_true", help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)" ) parser.add_argument( "--gather-with-grad", default=False, action="store_true", help="enable full distributed gradient for feature gather" ) parser.add_argument( '--force-image-size', type=int, nargs='+', default=None, help='Override default image size' ) parser.add_argument( "--force-quick-gelu", default=False, action='store_true', help="Force use of QuickGELU activation for non-OpenAI transformer models.", ) parser.add_argument( "--force-patch-dropout", default=None, type=float, help="Override the patch dropout during training, for fine tuning with no dropout near the end as in the paper", ) parser.add_argument( "--force-custom-text", default=False, action='store_true', help="Force use of CustomTextCLIP model (separate text-tower).", ) parser.add_argument( "--torchscript", default=False, action='store_true', help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'", ) parser.add_argument( "--trace", default=False, action='store_true', help="torch.jit.trace the model for inference / eval only", ) parser.add_argument( "--accum-freq", type=int, default=1, help="Update the model every --acum-freq steps." ) # arguments for distributed training parser.add_argument( "--dist-url", default="env://", type=str, help="url used to set up distributed training", ) parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--report-to", default='', type=str, help="Options are ['tensorboard']" ) parser.add_argument( "--debug", default=False, action="store_true", help="If true, more information is logged." ) parser.add_argument( "--copy-codebase", default=False, action="store_true", help="If true, we copy the entire base on the log directory, and execute from there." ) parser.add_argument( "--horovod", default=False, action="store_true", help="Use horovod for distributed training." ) parser.add_argument( "--ddp-static-graph", default=False, action='store_true', help="Enable static graph optimization for DDP in PyTorch >= 1.11.", ) parser.add_argument( "--no-set-device-rank", default=False, action="store_true", help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc)." ) parser.add_argument( "--seed", type=int, default=16, help="Default random seed." ) parser.add_argument( "--grad-clip-norm", type=float, default=None, help="Gradient clip." ) parser.add_argument( "--lock-text", default=False, action='store_true', help="Lock full text tower by disabling gradients.", ) parser.add_argument( "--lock-text-unlocked-layers", type=int, default=0, help="Leave last n image tower layer groups unlocked.", ) parser.add_argument( "--margin", type=float, default=1.0, help="hyper parameter for margin loss in ranking", ) parser.add_argument( "--lock-text-freeze-layer-norm", default=False, action='store_true', help="Freeze BatchNorm running stats in image tower for any locked layers.", ) parser.add_argument( "--log-every-n-steps", type=int, default=10, help="Log every n steps to tensorboard/console.", ) parser.add_argument( "--coca-caption-loss-weight", type=float, default=2.0, help="Weight assigned to caption loss in CoCa." ) parser.add_argument( "--coca-contrastive-loss-weight", type=float, default=1.0, help="Weight assigned to contrastive loss when training CoCa." ) parser.add_argument( "--remote-sync", type=str, default=None, help="Optinoally sync with a remote path specified by this arg", ) parser.add_argument( "--remote-sync-frequency", type=int, default=300, help="How frequently to sync to a remote directly if --remote-sync is not None.", ) parser.add_argument( "--remote-sync-protocol", choices=["s3", "fsspec"], default="s3", help="How to do the remote sync backup if --remote-sync is not None.", ) parser.add_argument( "--delete-previous-checkpoint", default=False, action="store_true", help="If true, delete previous checkpoint after storing a new one." ) parser.add_argument( "--distill-model", default=None, help='Which model arch to distill from, if any.' ) parser.add_argument( "--distill-pretrained", default=None, help='Which pre-trained weights to distill from, if any.' ) args = parser.parse_args(args) # If some params are not passed, we use the default values based on model name. default_params = get_default_params(args.model) for name, val in default_params.items(): if getattr(args, name) is None: setattr(args, name, val) return args