# Creating Plots Gradio is a great way to create extremely customizable dashboards. Gradio comes with three native Plot components: `gr.LinePlot`, `gr.ScatterPlot` and `gr.BarPlot`. All these plots have the same API. Let's take a look how to set them up. ## Creating a Plot with a pd.Dataframe Plots accept a pandas Dataframe as their value. The plot also takes `x` and `y` which represent the names of the columns that represent the x and y axes respectively. Here's a simple example: $code_plot_guide_line $demo_plot_guide_line All plots have the same API, so you could swap this out with a `gr.ScatterPlot`: $code_plot_guide_scatter $demo_plot_guide_scatter The y axis column in the dataframe should have a numeric type, but the x axis column can be anything from strings, numbers, categories, or datetimes. $code_plot_guide_scatter_nominal $demo_plot_guide_scatter_nominal ## Breaking out Series by Color You can break out your plot into series using the `color` argument. $code_plot_guide_series_nominal $demo_plot_guide_series_nominal If you wish to assign series specific colors, use the `color_map` arg, e.g. `gr.ScatterPlot(..., color_map={'white': '#FF9988', 'asian': '#88EEAA', 'black': '#333388'})` The color column can be numeric type as well. $code_plot_guide_series_quantitative $demo_plot_guide_series_quantitative ## Aggregating Values You can aggregate values into groups using the `x_bin` and `y_aggregate` arguments. If your x-axis is numeric, providing an `x_bin` will create a histogram-style binning: $code_plot_guide_aggregate_quantitative $demo_plot_guide_aggregate_quantitative If your x-axis is a string type instead, they will act as the category bins automatically: $code_plot_guide_aggregate_nominal $demo_plot_guide_aggregate_nominal ## Selecting Regions You can use the `.select` listener to select regions of a plot. Click and drag on the plot below to select part of the plot. $code_plot_guide_selection $demo_plot_guide_selection You can combine this and the `.double_click` listener to create some zoom in/out effects by changing `x_lim` which sets the bounds of the x-axis: $code_plot_guide_zoom $demo_plot_guide_zoom If you had multiple plots with the same x column, your event listeners could target the x limits of all other plots so that the x-axes stay in sync. $code_plot_guide_zoom_sync $demo_plot_guide_zoom_sync ## Making an Interactive Dashboard Take a look how you can have an interactive dashboard where the plots are functions of other Components. $code_plot_guide_interactive $demo_plot_guide_interactive It's that simple to filter and control the data presented in your visualization!