from pathlib import Path
from unittest.mock import patch
import numpy as np
import pandas as pd
import gradio as gr
class TestDataset:
def test_preprocessing(self):
test_file_dir = Path(__file__).parent / "test_files"
bus = str(Path(test_file_dir, "bus.png").resolve())
dataset = gr.Dataset(
components=["number", "textbox", "image", "html", "markdown"],
samples=[
[5, "hello", bus, "Bold", "**Bold**"],
[15, "hi", bus, "Italics", "*Italics*"],
],
)
row = dataset.preprocess(1)
assert isinstance(row, list)
assert row[0] == 15
assert row[1] == "hi"
assert row[2].endswith("bus.png")
assert row[3] == "Italics"
assert row[4] == "*Italics*"
dataset = gr.Dataset(
components=["number", "textbox", "image", "html", "markdown"],
samples=[
[5, "hello", bus, "Bold", "**Bold**"],
[15, "hi", bus, "Italics", "*Italics*"],
],
type="index",
)
assert dataset.preprocess(1) == 1
radio = gr.Radio(choices=[("name 1", "value 1"), ("name 2", "value 2")])
dataset = gr.Dataset(samples=[["value 1"], ["value 2"]], components=[radio])
assert dataset.samples == [["value 1"], ["value 2"]]
def test_postprocessing(self):
dataset = gr.Dataset(
components=["number", "textbox", "image", "html", "markdown"], type="index"
)
assert dataset.postprocess(1) == 1
@patch(
"gradio.components.Component.process_example",
spec=gr.components.Component.process_example,
)
@patch("gradio.components.Image.process_example", spec=gr.Image.process_example)
@patch("gradio.components.File.process_example", spec=gr.File.process_example)
@patch("gradio.components.Dataframe.process_example", spec=gr.DataFrame.process_example)
@patch("gradio.components.Model3D.process_example", spec=gr.Model3D.process_example)
def test_dataset_calls_process_example(*mocks):
gr.Dataset(
components=[gr.Dataframe(), gr.File(), gr.Image(), gr.Model3D(), gr.Textbox()],
samples=[
[
pd.DataFrame({"a": np.array([1, 2, 3])}),
"foo.png",
"bar.jpeg",
"duck.obj",
"hello",
]
],
)
assert all(m.called for m in mocks)