import gradio as gr import gradio.components as comp import os api_key = os.environ.get("HUGGINGFACE_API_KEY") #model_list = [ # "stabilityai/stable-diffusion-xl-base-0.9", # "stabilityai/stable-diffusion-2-1", # "stabilityai/stable-diffusion-xl-refiner-0.9", # "stabilityai/stable-diffusion-2-1-base", # "stabilityai/stable-diffusion-2", # "stabilityai/stable-diffusion-2-inpainting", # "stabilityai/stable-diffusion-x4-upscaler", # "stabilityai/stable-diffusion-2-depth", # "stabilityai/stable-diffusion-2-base", # "stabilityai/stable-diffusion-2-1-unclip", # "helenai/stabilityai-stable-diffusion-2-1-base-ov", # "helenai/stabilityai-stable-diffusion-2-1-ov", # "stabilityai/stable-diffusion-2-1-unclip-small" #] #default_model = "stabilityai/stable-diffusion-2" #model_name = gr.inputs.Dropdown(choices=model_list, label="Select Model", default=default_model) #def generate_image(text, default_model): # model = gr.load(default_model, source="huggingface", api_key=api_key) # return model.predict(text) #input_text = gr.inputs.Textbox(label="Input Text") #output_image = comp.Image(label="Generated Image") #iface = gr.Interface( # fn=generate_image, # inputs=[input_text, default_model], # outputs=output_image, # title="Text to Image Generation", # description="Generate an image from input text using a Hugging Face model." #) #iface.launch() gr.Interface.load("models/stabilityai/stable-diffusion-2-1").launch() #gr.load("models/stabilityai/stable-diffusion-2-1-base").launch(auth=("admin", "pass"))