import torch import numpy as np import gradio as gr from datasets import load_dataset from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) # model = model.to_bettertransformer() model.to(device) processor = AutoProcessor.from_pretrained(model_id) pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=30, batch_size=16, return_timestamps=True, torch_dtype=torch_dtype, device=device, ) dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) def input(audio): if audio is None: raise gr.Error("No audio file submitted!") sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) duration = len(y) / sr if duration > 20: print(duration) raise gr.Error("Exceed maximum limit!") elif y.ndim != 1: raise gr.Error("Please use mono!") text = pipe({"sampling_rate": sr, "raw": y}, generate_kwargs={"task": "transcribe"}, return_timestamps=True) return text["chunks"] with gr.Blocks() as demo: gr.Interface( fn=input, inputs="audio", outputs="text", title="Whisper Large V3: Short Audio Timestamp Transcribe", description="🤗 [whisper-large-v3](https://huggingface.co/spaces/hf-audio/whisper-large-v3), Limited the audio length to 20 seconds. Please check [here](https://github.com/DUQIA/Short-Video-To-Video) for details." ) demo.launch()