""" Demo built with gradio """ import pickle as pkl import sys, os import os.path as osp from typing import Iterable, Optional from functools import partial import trimesh from torch.utils.data import DataLoader import cv2 from accelerate import Accelerator from tqdm import tqdm from glob import glob sys.path.append(os.getcwd()) import hydra import torch import numpy as np import imageio import gradio as gr import plotly.graph_objs as go import training_utils import traceback from configs.structured import ProjectConfig from demo import DemoRunner from dataset.demo_dataset import DemoDataset md_description=""" # HDM Interaction Reconstruction Demo ### Official Demo of the paper \"Template Free Reconstruction of Human Object Interaction\", CVPR'24. [Project Page](https://virtualhumans.mpi-inf.mpg.de/procigen-hdm/)|[Code](https://github.com/xiexh20/HDM)|[Dataset](https://edmond.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.2VUEUS )|[Paper](https://virtualhumans.mpi-inf.mpg.de/procigen-hdm/paper-lowreso.pdf) Upload your own human object interaction image and get full 3D reconstruction! ## Citation ``` @inproceedings{xie2023template_free, title = {Template Free Reconstruction of Human-object Interaction with Procedural Interaction Generation}, author = {Xie, Xianghui and Bhatnagar, Bharat Lal and Lenssen, Jan Eric and Pons-Moll, Gerard}, booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, } ``` """ citation_str = """ ## Citation ``` @inproceedings{xie2023template_free, title = {Template Free Reconstruction of Human-object Interaction with Procedural Interaction Generation}, author = {Xie, Xianghui and Bhatnagar, Bharat Lal and Lenssen, Jan Eric and Pons-Moll, Gerard}, booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2024}, } """ html_str = """
Instruction:
More example results can be found in our Project Page.
Have fun!
""" def plot_points(colors, coords): """ use plotly to visualize 3D point with colors """ trace = go.Scatter3d(x=coords[:, 0], y=coords[:, 1], z=coords[:, 2], mode='markers', marker=dict( size=2, color=colors )) layout = go.Layout( scene=dict( xaxis=dict( title="", showgrid=False, zeroline=False, showline=False, ticks='', showticklabels=False ), yaxis=dict( title="", showgrid=False, zeroline=False, showline=False, ticks='', showticklabels=False ), zaxis=dict( title="", showgrid=False, zeroline=False, showline=False, ticks='', showticklabels=False ), ), margin=dict(l=0, r=0, b=0, t=0), showlegend=False ) fig = go.Figure(data=[trace], layout=layout) return fig def inference(runner: DemoRunner, cfg: ProjectConfig, rgb, mask_hum, mask_obj, std_coverage, input_seed, input_cls): """ given user input, run inference :param runner: :param cfg: :param rgb: (h, w, 3), np array :param mask_hum: (h, w, 3), np array :param mask_obj: (h, w, 3), np array :param std_coverage: float value, used to estimate camera translation :param input_seed: random seed :param input_cls: the object category of the input image :return: path to the 3D reconstruction, and an interactive 3D figure for visualizing the point cloud """ log = "" try: # Set random seed training_utils.set_seed(int(input_seed)) data = DemoDataset([], (cfg.dataset.image_size, cfg.dataset.image_size), std_coverage) batch = data.image2batch(rgb, mask_hum, mask_obj) if input_cls != 'general': log += f"Reloading fine-tuned checkpoint of category {input_cls}\n" runner.reload_checkpoint(input_cls) out_stage1, out_stage2 = runner.forward_batch(batch, cfg) points = out_stage2.points_packed().cpu().numpy() colors = out_stage2.features_packed().cpu().numpy() fig = plot_points(colors, points) # save tmp point cloud outdir = './results' os.makedirs(outdir, exist_ok=True) trimesh.PointCloud(points, colors).export(outdir + f"/pred_std{std_coverage}_seed{input_seed}_stage2_{input_cls}.ply") trimesh.PointCloud(out_stage1.points_packed().cpu().numpy(), out_stage1.features_packed().cpu().numpy()).export( outdir + f"/pred_std{std_coverage}_seed{input_seed}_stage1_{input_cls}.ply") log += 'Successfully reconstructed the image.' outfile = outdir + f"/pred_std{std_coverage}_seed{input_seed}_stage2_{input_cls}.ply" except Exception as e: log = traceback.format_exc() fig, outfile = None, None return fig, outfile, log @hydra.main(config_path='configs', config_name='configs', version_base='1.1') def main(cfg: ProjectConfig): # Setup model runner = DemoRunner(cfg) # Setup interface demo = gr.Blocks(title="HDM Interaction Reconstruction Demo") with demo: gr.HTML(html_str) # Input data with gr.Row(): input_rgb = gr.Image(label='Input RGB', type='numpy') input_mask_hum = gr.Image(label='Human mask', type='numpy') with gr.Row(): input_mask_obj = gr.Image(label='Object mask', type='numpy') with gr.Column(): input_std = gr.Number(label='Gaussian std coverage', value=3.5, info="This value is used to estimate camera translation to project the points." "The larger value, the camera is farther away. It is category-dependent. " "We empirically found these values are suitable: backpack-3.5, ball-3.0, bottle-3.0," "box-3.5, chair-3.8, skateboard-3.0, suitcase-3.2, table-3.5. " "If you are not sure, 3.5 is a good start point.") input_cls = gr.Dropdown(label='Object category', info='We fine tuned the model for some specific categories. ' 'Reconstructing using these models should lead to better result ' 'for these specific categories. Simply select the category that ' 'fits the object from input image.', choices=['general', 'backpack', 'ball', 'bottle', 'box', 'chair', 'skateboard', 'suitcase', 'table'], value='general') input_seed = gr.Number(label='Random seed', value=42) # Output visualization with gr.Row(): pc_plot = gr.Plot(label="Reconstructed point cloud") out_pc_download = gr.File(label="Download results") # this allows downloading with gr.Row(): out_log = gr.TextArea(label='Output log') gr.HTML("""