import json import cv2 import numpy as np import os from torch.utils.data import Dataset from PIL import Image import cv2 from .data_utils import * from .base import BaseDataset from pycocotools import mask as mask_utils from lvis import LVIS class LvisDataset(BaseDataset): def __init__(self, image_dir, json_path): self.image_dir = image_dir self.json_path = json_path lvis_api = LVIS(json_path) img_ids = sorted(lvis_api.imgs.keys()) imgs = lvis_api.load_imgs(img_ids) anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] self.data = imgs self.annos = anns self.lvis_api = lvis_api self.size = (512,512) self.clip_size = (224,224) self.dynamic = 0 def register_subset(self, path): data = os.listdir(path) data = [ os.path.join(path, i) for i in data if '.json' in i] self.data = self.data + data def get_sample(self, idx): # ==== get pairs ===== image_name = self.data[idx]['coco_url'].split('/')[-1] image_path = os.path.join(self.image_dir, image_name) image = cv2.imread(image_path) ref_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) anno = self.annos[idx] obj_ids = [] for i in range(len(anno)): obj = anno[i] area = obj['area'] if area > 3600: obj_ids.append(i) assert len(anno) > 0 obj_id = np.random.choice(obj_ids) anno = anno[obj_id] ref_mask = self.lvis_api.ann_to_mask(anno) tar_image, tar_mask = ref_image.copy(), ref_mask.copy() item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) sampled_time_steps = self.sample_timestep() item_with_collage['time_steps'] = sampled_time_steps return item_with_collage def __len__(self): return 20000 def check_region_size(self, image, yyxx, ratio, mode = 'max'): pass_flag = True H,W = image.shape[0], image.shape[1] H,W = H * ratio, W * ratio y1,y2,x1,x2 = yyxx h,w = y2-y1,x2-x1 if mode == 'max': if h > H or w > W: pass_flag = False elif mode == 'min': if h < H or w < W: pass_flag = False return pass_flag