import json import cv2 import numpy as np import os from torch.utils.data import Dataset from PIL import Image import cv2 from .data_utils import * from .base import BaseDataset import albumentations as A class FashionTryonDataset(BaseDataset): def __init__(self, image_dir): self.image_root = image_dir self.data =os.listdir(self.image_root) self.size = (512,512) self.clip_size = (224,224) self.dynamic = 2 def __len__(self): return 5000 def aug_data(self, image): transform = A.Compose([ A.RandomBrightnessContrast(p=0.5), ]) transformed = transform(image=image.astype(np.uint8)) transformed_image = transformed["image"] return transformed_image def check_region_size(self, image, yyxx, ratio, mode = 'max'): pass_flag = True H,W = image.shape[0], image.shape[1] H,W = H * ratio, W * ratio y1,y2,x1,x2 = yyxx h,w = y2-y1,x2-x1 if mode == 'max': if h > H and w > W: pass_flag = False elif mode == 'min': if h < H and w < W: pass_flag = False return pass_flag def get_sample(self, idx): cloth_dir = os.path.join(self.image_root, self.data[idx]) ref_image_path = os.path.join(cloth_dir, 'target.jpg') ref_image = cv2.imread(ref_image_path) ref_image = cv2.cvtColor(ref_image.copy(), cv2.COLOR_BGR2RGB) ref_mask_path = os.path.join(cloth_dir,'mask.jpg') ref_mask = cv2.imread(ref_mask_path)[:,:,0] > 128 target_dirs = [i for i in os.listdir(cloth_dir ) if '.jpg' not in i] target_dir_name = np.random.choice(target_dirs) target_image_path = os.path.join(cloth_dir, target_dir_name + '.jpg') target_image= cv2.imread(target_image_path) tar_image = cv2.cvtColor(target_image.copy(), cv2.COLOR_BGR2RGB) target_mask_path = os.path.join(cloth_dir, target_dir_name, 'segment.png') tar_mask= cv2.imread(target_mask_path)[:,:,0] target_mask = tar_mask == 7 kernel = np.ones((3, 3), dtype=np.uint8) tar_mask = cv2.erode(target_mask.astype(np.uint8), kernel, iterations=3) item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 1.0) sampled_time_steps = self.sample_timestep() item_with_collage['time_steps'] = sampled_time_steps return item_with_collage