import json import cv2 import numpy as np import os from torch.utils.data import Dataset from PIL import Image import cv2 from .data_utils import * from .base import BaseDataset import albumentations as A class DresscodeDataset(BaseDataset): def __init__(self, image_dir): self.image_root = image_dir self.data = os.listdir(self.image_root) self.size = (512,512) self.clip_size = (224,224) self.dynamic = 2 def __len__(self): return 20000 def check_region_size(self, image, yyxx, ratio, mode = 'max'): pass_flag = True H,W = image.shape[0], image.shape[1] H,W = H * ratio, W * ratio y1,y2,x1,x2 = yyxx h,w = y2-y1,x2-x1 if mode == 'max': if h > H and w > W: pass_flag = False elif mode == 'min': if h < H and w < W: pass_flag = False return pass_flag def get_sample(self, idx): tar_mask_path = os.path.join(self.image_root, self.data[idx]) tar_image_path = tar_mask_path.replace('label_maps/','images/').replace('_4.png','_0.jpg') ref_image_path = tar_mask_path.replace('label_maps/','images/').replace('_4.png','_1.jpg') # Read Image and Mask ref_image = cv2.imread(ref_image_path) ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB) tar_image = cv2.imread(tar_image_path) tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB) ref_mask = (ref_image < 240).astype(np.uint8)[:,:,0] tar_mask = Image.open(tar_mask_path ).convert('P') tar_mask= np.array(tar_mask) tar_mask = tar_mask == 4 item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask, max_ratio = 1.0) sampled_time_steps = self.sample_timestep() item_with_collage['time_steps'] = sampled_time_steps return item_with_collage