import json import cv2 import numpy as np import os from torch.utils.data import Dataset from PIL import Image import cv2 from .data_utils import * from .base import BaseDataset class DreamBoothDataset(BaseDataset): def __init__(self, fg_dir, bg_dir): self.bg_dir = bg_dir bg_data = os.listdir(self.bg_dir) self.bg_data = [i for i in bg_data if 'mask' in i] self.image_dir = fg_dir self.data = os.listdir(self.image_dir) self.size = (512,512) self.clip_size = (224,224) ''' Dynamic: 0: Static View, High Quality 1: Multi-view, Low Quality 2: Multi-view, High Quality ''' self.dynamic = 1 def __len__(self): return len(self.data) def __getitem__(self, idx): idx = np.random.randint(0, len(self.data)-1) item = self.get_sample(idx) return item def check_region_size(self, image, yyxx, ratio, mode = 'max'): pass_flag = True H,W = image.shape[0], image.shape[1] H,W = H * ratio, W * ratio y1,y2,x1,x2 = yyxx h,w = y2-y1,x2-x1 if mode == 'max': if h > H and w > W: pass_flag = False elif mode == 'min': if h < H and w < W: pass_flag = False return pass_flag def get_alpha_mask(self, mask_path): image = cv2.imread( mask_path, cv2.IMREAD_UNCHANGED) mask = (image[:,:,-1] > 128).astype(np.uint8) return mask def get_sample(self, idx): dir_name = self.data[idx] dir_path = os.path.join(self.image_dir, dir_name) images = os.listdir(dir_path) image_name = [i for i in images if '.png' in i][0] image_path = os.path.join(dir_path, image_name) image = cv2.imread( image_path, cv2.IMREAD_UNCHANGED) mask = (image[:,:,-1] > 128).astype(np.uint8) image = image[:,:,:-1] image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB) ref_image = image ref_mask = mask ref_image, ref_mask = expand_image_mask(image, mask, ratio=1.4) bg_idx = np.random.randint(0, len(self.bg_data)-1) tar_mask_name = self.bg_data[bg_idx] tar_mask_path = os.path.join(self.bg_dir, tar_mask_name) tar_image_path = tar_mask_path.replace('_mask','_GT') tar_image = cv2.imread(tar_image_path).astype(np.uint8) tar_image = cv2.cvtColor(tar_image, cv2.COLOR_BGR2RGB) tar_mask = (cv2.imread(tar_mask_path) > 128).astype(np.uint8)[:,:,0] item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) sampled_time_steps = self.sample_timestep() item_with_collage['time_steps'] = sampled_time_steps return item_with_collage