import numpy as np import torch import cv2 def mask_score(mask): '''Scoring the mask according to connectivity.''' mask = mask.astype(np.uint8) if mask.sum() < 10: return 0 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cnt_area = [cv2.contourArea(cnt) for cnt in contours] conc_score = np.max(cnt_area) / sum(cnt_area) return conc_score def sobel(img, mask, thresh = 50): '''Calculating the high-frequency map.''' H,W = img.shape[0], img.shape[1] img = cv2.resize(img,(256,256)) mask = (cv2.resize(mask,(256,256)) > 0.5).astype(np.uint8) kernel = np.ones((5,5),np.uint8) mask = cv2.erode(mask, kernel, iterations = 2) Ksize = 3 sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize) sobel_X = cv2.convertScaleAbs(sobelx) sobel_Y = cv2.convertScaleAbs(sobely) scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0) scharr = np.max(scharr,-1) * mask scharr[scharr < thresh] = 0.0 scharr = np.stack([scharr,scharr,scharr],-1) scharr = (scharr.astype(np.float32)/255 * img.astype(np.float32) ).astype(np.uint8) scharr = cv2.resize(scharr,(W,H)) return scharr def resize_and_pad(image, box): '''Fitting an image to the box region while keeping the aspect ratio.''' y1,y2,x1,x2 = box H,W = y2-y1, x2-x1 h,w = image.shape[0], image.shape[1] r_box = W / H r_image = w / h if r_box >= r_image: h_target = H w_target = int(w * H / h) image = cv2.resize(image, (w_target, h_target)) w1 = (W - w_target) // 2 w2 = W - w_target - w1 pad_param = ((0,0),(w1,w2),(0,0)) image = np.pad(image, pad_param, 'constant', constant_values=255) else: w_target = W h_target = int(h * W / w) image = cv2.resize(image, (w_target, h_target)) h1 = (H-h_target) // 2 h2 = H - h_target - h1 pad_param =((h1,h2),(0,0),(0,0)) image = np.pad(image, pad_param, 'constant', constant_values=255) return image def expand_image_mask(image, mask, ratio=1.4): h,w = image.shape[0], image.shape[1] H,W = int(h * ratio), int(w * ratio) h1 = int((H - h) // 2) h2 = H - h - h1 w1 = int((W -w) // 2) w2 = W -w - w1 pad_param_image = ((h1,h2),(w1,w2),(0,0)) pad_param_mask = ((h1,h2),(w1,w2)) image = np.pad(image, pad_param_image, 'constant', constant_values=255) mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0) return image, mask def resize_box(yyxx, H,W,h,w): y1,y2,x1,x2 = yyxx y1,y2 = int(y1/H * h), int(y2/H * h) x1,x2 = int(x1/W * w), int(x2/W * w) y1,y2 = min(y1,h), min(y2,h) x1,x2 = min(x1,w), min(x2,w) return (y1,y2,x1,x2) def get_bbox_from_mask(mask): h,w = mask.shape[0],mask.shape[1] if mask.sum() < 10: return 0,h,0,w rows = np.any(mask,axis=1) cols = np.any(mask,axis=0) y1,y2 = np.where(rows)[0][[0,-1]] x1,x2 = np.where(cols)[0][[0,-1]] return (y1,y2,x1,x2) def expand_bbox(mask,yyxx,ratio=[1.2,2.0], min_crop=0): y1,y2,x1,x2 = yyxx ratio = np.random.randint( ratio[0] * 10, ratio[1] * 10 ) / 10 H,W = mask.shape[0], mask.shape[1] xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2) h = ratio * (y2-y1+1) w = ratio * (x2-x1+1) h = max(h,min_crop) w = max(w,min_crop) x1 = int(xc - w * 0.5) x2 = int(xc + w * 0.5) y1 = int(yc - h * 0.5) y2 = int(yc + h * 0.5) x1 = max(0,x1) x2 = min(W,x2) y1 = max(0,y1) y2 = min(H,y2) return (y1,y2,x1,x2) def box2squre(image, box): H,W = image.shape[0], image.shape[1] y1,y2,x1,x2 = box cx = (x1 + x2) // 2 cy = (y1 + y2) // 2 h,w = y2-y1, x2-x1 if h >= w: x1 = cx - h//2 x2 = cx + h//2 else: y1 = cy - w//2 y2 = cy + w//2 x1 = max(0,x1) x2 = min(W,x2) y1 = max(0,y1) y2 = min(H,y2) return (y1,y2,x1,x2) def pad_to_square(image, pad_value = 255, random = False): H,W = image.shape[0], image.shape[1] if H == W: return image padd = abs(H - W) if random: padd_1 = int(np.random.randint(0,padd)) else: padd_1 = int(padd / 2) padd_2 = padd - padd_1 if H > W: pad_param = ((0,0),(padd_1,padd_2),(0,0)) else: pad_param = ((padd_1,padd_2),(0,0),(0,0)) image = np.pad(image, pad_param, 'constant', constant_values=pad_value) return image def box_in_box(small_box, big_box): y1,y2,x1,x2 = small_box y1_b, _, x1_b, _ = big_box y1,y2,x1,x2 = y1 - y1_b ,y2 - y1_b, x1 - x1_b ,x2 - x1_b return (y1,y2,x1,x2 ) def shuffle_image(image, N): height, width = image.shape[:2] block_height = height // N block_width = width // N blocks = [] for i in range(N): for j in range(N): block = image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] blocks.append(block) np.random.shuffle(blocks) shuffled_image = np.zeros((height, width, 3), dtype=np.uint8) for i in range(N): for j in range(N): shuffled_image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = blocks[i*N+j] return shuffled_image def get_mosaic_mask(image, fg_mask, N=16, ratio = 0.5): ids = [i for i in range(N * N)] masked_number = int(N * N * ratio) masked_id = np.random.choice(ids, masked_number, replace=False) height, width = image.shape[:2] mask = np.ones((height, width)) block_height = height // N block_width = width // N b_id = 0 for i in range(N): for j in range(N): if b_id in masked_id: mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] * 0 b_id += 1 mask = mask * fg_mask mask3 = np.stack([mask,mask,mask],-1).copy().astype(np.uint8) noise = q_x(image) noise_mask = image * mask3 + noise * (1-mask3) return noise_mask def extract_canney_noise(image, mask, dilate=True): h,w = image.shape[0],image.shape[1] mask = cv2.resize(mask.astype(np.uint8),(w,h)) > 0.5 kernel = np.ones((8, 8), dtype=np.uint8) mask = cv2.erode(mask.astype(np.uint8), kernel, 10) canny = cv2.Canny(image, 50,100) * mask kernel = np.ones((8, 8), dtype=np.uint8) mask = (cv2.dilate(canny, kernel, 5) > 128).astype(np.uint8) mask = np.stack([mask,mask,mask],-1) pure_noise = q_x(image, t=1) * 0 + 255 canny_noise = mask * image + (1-mask) * pure_noise return canny_noise def get_random_structure(size): choice = np.random.randint(1, 5) if choice == 1: return cv2.getStructuringElement(cv2.MORPH_RECT, (size, size)) elif choice == 2: return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) elif choice == 3: return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size//2)) elif choice == 4: return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size//2, size)) def random_dilate(seg, min=3, max=10): size = np.random.randint(min, max) kernel = get_random_structure(size) seg = cv2.dilate(seg,kernel,iterations = 1) return seg def random_erode(seg, min=3, max=10): size = np.random.randint(min, max) kernel = get_random_structure(size) seg = cv2.erode(seg,kernel,iterations = 1) return seg def compute_iou(seg, gt): intersection = seg*gt union = seg+gt return (np.count_nonzero(intersection) + 1e-6) / (np.count_nonzero(union) + 1e-6) def select_max_region(mask): nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8) background = 0 for row in range(stats.shape[0]): if stats[row, :][0] == 0 and stats[row, :][1] == 0: background = row stats_no_bg = np.delete(stats, background, axis=0) max_idx = stats_no_bg[:, 4].argmax() max_region = np.where(labels==max_idx+1, 1, 0) return max_region.astype(np.uint8) def perturb_mask(gt, min_iou = 0.3, max_iou = 0.99): iou_target = np.random.uniform(min_iou, max_iou) h, w = gt.shape gt = gt.astype(np.uint8) seg = gt.copy() # Rare case if h <= 2 or w <= 2: print('GT too small, returning original') return seg # Do a bunch of random operations for _ in range(250): for _ in range(4): lx, ly = np.random.randint(w), np.random.randint(h) lw, lh = np.random.randint(lx+1,w+1), np.random.randint(ly+1,h+1) # Randomly set one pixel to 1/0. With the following dilate/erode, we can create holes/external regions if np.random.rand() < 0.1: cx = int((lx + lw) / 2) cy = int((ly + lh) / 2) seg[cy, cx] = np.random.randint(2) * 255 # Dilate/erode if np.random.rand() < 0.5: seg[ly:lh, lx:lw] = random_dilate(seg[ly:lh, lx:lw]) else: seg[ly:lh, lx:lw] = random_erode(seg[ly:lh, lx:lw]) seg = np.logical_or(seg, gt).astype(np.uint8) #seg = select_max_region(seg) if compute_iou(seg, gt) < iou_target: break seg = select_max_region(seg.astype(np.uint8)) return seg.astype(np.uint8) def q_x(x_0,t=65): '''Adding noise for and given image.''' x_0 = torch.from_numpy(x_0).float() / 127.5 - 1 num_steps = 100 betas = torch.linspace(-6,6,num_steps) betas = torch.sigmoid(betas)*(0.5e-2 - 1e-5)+1e-5 alphas = 1-betas alphas_prod = torch.cumprod(alphas,0) alphas_prod_p = torch.cat([torch.tensor([1]).float(),alphas_prod[:-1]],0) alphas_bar_sqrt = torch.sqrt(alphas_prod) one_minus_alphas_bar_log = torch.log(1 - alphas_prod) one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod) noise = torch.randn_like(x_0) alphas_t = alphas_bar_sqrt[t] alphas_1_m_t = one_minus_alphas_bar_sqrt[t] return (alphas_t * x_0 + alphas_1_m_t * noise).numpy() * 127.5 + 127.5 def extract_target_boundary(img, target_mask): Ksize = 3 sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize) # sobel-x sobel_X = cv2.convertScaleAbs(sobelx) # sobel-y sobel_Y = cv2.convertScaleAbs(sobely) # sobel-xy scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0) scharr = np.max(scharr,-1).astype(np.float32)/255 scharr = scharr * target_mask.astype(np.float32) return scharr